1
|
Xiong X, Zhou H, Xu X, Fu Q, Wan Y, Cao Y, Tang R, Li F, Zhang J, Li P. Ultrasound Molecular Imaging Enhances High-Intensity Focused Ultrasound Ablation on Liver Cancer With B7-H3-Targeted Microbubbles. Cancer Med 2024; 13:e70341. [PMID: 39431644 PMCID: PMC11492419 DOI: 10.1002/cam4.70341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is a promising minimally invasive treatment for liver cancer; however, its efficacy is often limited by the attenuation of ultrasonic energy. This study investigates the effectiveness of B7-H3-targeted microbubbles (T-MBs) in enhancing HIFU ablation of liver cancer and explores their potential for clinical translation. METHODS T-MBs and isotype control microbubbles (I-MBs) were synthesized through the conjugation of biotinylated anti-B7-H3 antibody and isotype control antibody to the microbubble surface, respectively. Contrast-enhanced ultrasound imaging was performed to compare the accumulation of T-MBs and I-MBs in liver cancer at various time points. The efficacy of T-MBs in enhancing HIFU treatment was evaluated by measuring the immediate tumor ablation rate and long-term tumor growth suppression. Additionally, the induced antitumor immune response was assessed through cytokine quantification in serum and tumor tissue, along with immunofluorescence staining conducted on days 1, 3, and 7 post-treatment. RESULTS T-MBs demonstrated superior liver cancer-specific accumulation, characterized by higher concentrations and prolonged retention compared to I-MBs. The combination of T-MBs with HIFU resulted in significantly enhanced tumor ablation rates and superior tumor growth suppression. Post-treatment analysis revealed a gradual uptick in cytokine levels within the tumor microenvironment, along with progressive infiltration of antitumor immune cells. CONCLUSION T-MBs effectively enhance the therapeutic efficacy of HIFU for liver cancer treatment while simultaneously promoting an antitumor immune response. These findings provide a strong experimental foundation for the clinical translation of ultrasound molecular imaging combined with HIFU as a novel approach for tumor therapy.
Collapse
Affiliation(s)
- Xialin Xiong
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Hang Zhou
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Xinzhi Xu
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Qihuan Fu
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Yujie Wan
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Yuting Cao
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Rui Tang
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Fang Li
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Jun Zhang
- Clinical Center for Tumor TherapyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Pan Li
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Xie F, Yan L, Li YM, Lan Y, Xiao J, Zhang MB, Jin Z, Zhang Y, Tian XQ, Zhu YQ, Li ZP, Luo YK. Targeting Diagnosis of High-Risk Papillary Thyroid Carcinoma Using Ultrasound Contrast Agent With the BRAF V600E Mutation: An Experimental Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2789-2802. [PMID: 35229905 DOI: 10.1002/jum.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE High-risk papillary thyroid carcinoma (PTC) patients with BRAF mutation have lymph node and distant metastases and poor prognosis. Therefore, this study aims to develop a targeted ultrasound contrast agent for the BRAFV600E mutation to screen high-risk PTC at early stage. METHODS The targeted lipid nanobubbles carrying BRAFV600E antibody were prepared using thin film hydration-sonication and avidin-biotin binding methods. The physicochemical properties and stability of the targeted nanobubbles were detected by transmission electron microscopy, atomic force microscopy, and confocal laser scanning microscopy. The target binding abilities of the targeted nanobubbles in the PTC cells (B-CPAP) overexpressed mutant BRAFV600E were evaluated by immunofluorescence staining, quantitative real-time polymerase chain reaction, western blot, and fluorescence microscopy. After PTC tumor models overexpressed mutant BRAFV600E were established, the enhanced images of targeted lipid nanobubbles and untargeted lipid nanobubbles on PTC tumors in nude mice were observed using contrast-enhanced ultrasound imaging. RESULTS The targeted lipid nanobubbles revealed uniform, round morphology, and good stability with a nanoscale size. Besides, BRAFV600E monoclonal antibody was observed to be combined on the surface of lipid nanobubbles. Furthermore, the targeted nanobubbles had a good targeting diagnosis ability in PTC cells with BRAFV600E overexpression. Moreover, the targeted nanobubbles had better ultrasound enhancement and peak intensity of the time-intensity curve (P < .001) in PTC tumors with BRAFV600E overexpression as compared to the untargeted lipid nanobubbles. CONCLUSION The targeted lipid nanobubbles carrying BRAFV600E antibody could be regarded as a potential targeted ultrasound contrast agent for the diagnosis of high-risk PTC.
Collapse
Affiliation(s)
- Fang Xie
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Lin Yan
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yi-Ming Li
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yu Lan
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jing Xiao
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Bo Zhang
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhuang Jin
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-Qi Tian
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ya-Qiong Zhu
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhi-Ping Li
- Pharmacology Research Department, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu-Kun Luo
- Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Hu Z, Bachawal SV, Li X, Wang H, Wilson KE, Li P, Paulmurugan R. Detection and Characterization of Sentinel Lymph Node by Ultrasound Molecular Imaging with B7-H3-Targeted Microbubbles in Orthotopic Breast Cancer Model in Mice. Mol Imaging Biol 2022; 24:333-340. [PMID: 34787812 DOI: 10.1007/s11307-021-01680-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Accurate identification and assessment of sentinel lymph node (SLN) using noninvasive imaging methods can play a vital role in tumor staging, surgical planning, and prognostic evaluation. In this study, we assessed the efficacy of B7-H3-targeted molecular-ultrasound imaging for the early SLN detection, and characterization in a mouse model of orthotopic breast cancer. PROCEDURES We established a mouse breast cancer model with lymph node metastasis by injecting MAD-MB 231 cells which were engineered to express firefly luciferase reporter gene into the fat pad of the right 4th mammary gland in female BALB/c nude mice. The sole lymph node (LN) close to the tumor was regarded as the SLN for imaging investigation, which included metastatic and non-metastatic SLNs. The LN in the right 4th mammary gland from normal mice was used as normal control (normal mice LN). The commercially available preclinical streptavidin-coated, perfluorocarbon-containing lipid-shelled microbubbles (VisualSonics, Toronto, Canada) were used to generate B7-H3-targeted microbubbles (MBB7-H3) and control microbubbles (MBControl). Then, ultrasound molecular imaging (USMI) was performed using a high-resolution transducer (MS250; center frequency, 21 MHz; Vevo 2100; VisualSonics, Toronto, Canada) after intravenous injection of microbubbles. RESULTS The SLN was clearly detected and located under conventional (B-mode) and contrast-enhanced ultrasonography with microbubble injection. The metastatic SLNs showed a markedly higher signal from B7-H3-targeted microbubbles (MBB7-H3) compared to the non-metastatic SLNs and normal LNs. The metastatic SLN was further confirmed by ex vivo bioluminescence imaging and eventually verified by histological analysis. CONCLUSIONS Our findings suggest the potential value of USMI using B7-H3 targeted microbubbles in breast cancer and establish an effective imaging method for the non-invasive detection and characterization of SLN.
Collapse
Affiliation(s)
- Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA
| | - Xuelin Li
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Huaijun Wang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA
| | - Katheryne E Wilson
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA
| | - Pan Li
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA.
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA.
| |
Collapse
|
4
|
Zhao C, Ma L, Luo Y, Li W, Xiao M, Zhu Q, Jiang Y. In vivo visualization and characterization of inflamed intestinal wall: the exploration of targeted microbubbles in assessing NF-κB expression. J Cell Mol Med 2021; 25:8973-8984. [PMID: 34409723 PMCID: PMC8435419 DOI: 10.1111/jcmm.16858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
NF‐κB, a critical cytokine of inflammatory bowel diseases (IBD), is a viable marker to reflect the inflammatory activity of the intestine. We aimed to develop NF‐κB‐targeted microbubbles (MBs) and perform molecular contrast‐enhanced ultrasound (CEUS) to quantify NF‐κB expressions on the intestinal wall in IBD mice in vivo. In this study, NF‐κB‐targeted MBs were fabricated by connecting biotin‐loaded NF‐κB antibodies and avidin‐loaded MBs. NF‐κB‐targeted MBs presented as transparent and round bubbles with an average diameter of 1.03/μm±0.01. The specific binding of targeted MBs and inflammatory cells was validated by in vitro experiments, including flow cytometry, Western blot and immunofluorescence, which revealed the specific binding of targeted MBs and inflammatory cells. Subsequently, NF‐κB‐targeted CEUS imaging was performed on mice with chemical‐induced colitis, and the peak intensity (PI) and time‐to‐peak (TTP) were quantified. Pathological and immunohistochemical (IHC) examinations were further implemented. For the target CEUS group, fast enhancement followed by slow subsiding was observed. The PI of target CEUS of the IBD mice was significantly higher than that of non‐target CEUS of the IBD mice, healthy controls and target CEUS of the treated IBD mice (34835%[13379–73492%] VS 437%[236–901%], 130%[79–231%], 528%[274–779%], p<0.0001), in accordance with the IHC results of NF‐κB expressions. The TTP of target CEUS of the treated mice was significantly higher than that of untreated mice (35.7s [18.1–49.5s] VS 8.3s [4.2–12.5s], p<0.0001). Therefore, we suggested that NF‐κB‐targeted CEUS could accurately detect and quantify NF‐κB expressions on the intestinal walls of IBD, enabling the evaluation of intestinal inflammation.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Ma
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanwen Luo
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbo Li
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengsu Xiao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingli Zhu
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Jiang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Soletti RC, de Britto MAP, Borges HL, Machado JC. Detection of Mice Colorectal Tumors by Endoluminal Ultrasound Biomicroscopic Images and Quantification of Image Augmented Gray Values Following Injection of VEGFR-2 Targeted Contrast Agent. Acad Radiol 2021; 28:808-816. [PMID: 32067837 DOI: 10.1016/j.acra.2020.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES Ultrasound biomicroscopy (UBM) is a noninvasive imaging technique that can be applied in detecting colonic tumors and, once associated with an ultrasound contrast agent (UCA), can identify the molecular expression of cancer-related biomarkers, such as the vascular endothelial growth factor receptor 2 (VEGFR-2). The present work aimed to detect colonic tumors and quantify augmented gray values of endoluminal UBM (eUBM) images from colonic tumors following the injection of VEGFR-2 targeted UCA (VEGFR2-UCA) into a mouse model of colorectal cancer. MATERIAL AND METHODS A 40 MHz miniprobe catheter inserted through the biopsy channel of a pediatric flexible bronchofiberscope was used to obtain colonoscopic and B-mode eUBM images simultaneously. Seventeen tumor-bearing mice had their colons inspected and six of them were subjected to a VEGFR2-UCA injection to predict VEGFR-2 expression. RESULTS All animals developed distal colon tumors and eUBM was able to detect all of them and also to characterize the tumors, with 71.4% being in situ lesions and 28.6% being tumors invading the mucosa + muscularis mucosae + submucosa layers, as confirmed by histopathology. After VEGFR2-UCA injection, gray values from the eUBM tumoral images increased significantly (p < 0.01). Tumor sites with increased eUBM image gray values corresponded to areas with increased VEGFR-2 expression, as confirmed by immunohistochemistry. CONCLUSION The results confirm eUBM as a powerful noninvasive and real-time tool for detecting colon tumor and its invasiveness and once associated with VEGFR2-UCA may become a tool for the detection of VEGFR-2 expression in colonic tumors.
Collapse
|
6
|
Hu R, Zeng Q, Su X, Feng W, Xiang H. The Correlation between Targeted Contrast-Enhanced Ultrasound Imaging and Tumor Neovascularization of Ovarian Cancer Xenografts in Nude Mice. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5553649. [PMID: 33815730 PMCID: PMC7990539 DOI: 10.1155/2021/5553649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
In order to explore the correlation between targeted contrast-enhanced ultrasound imaging and tumor neovascularization of ovarian cancer xenografts in nude mice, a total of 49 nude mice were selected and randomly divided into 1-week group, 2-week group, 3-week group, 4-week group, 5-week group, 6-week group, and 7-week group according to their ovarian cancer xenografts' growth time, with 7 ovarian cancer xenografts in each group. After preparing antibody-carrying targeted contrast agent, each group of xenografts performed normal and targeted contrast ultrasound examinations to obtain peak intensity, time to peak, and other imaging parameters; then, those ovarian cancer xenografts were sacrificed for pathological analysis: the neovascular density and antibody expression of the cancer xenografts at different stages were observed and counted, and the correlation between targeted contrast-enhanced ultrasound parameters and tumor neovascular densities of the ovarian cancer xenografts was analyzed. The results show that the peak intensities of targeted contrast ultrasound imaging are greater than that of ordinary ultrasound imaging in the 2-, 3-, 4-, and 5-week groups with statistically significant differences (P < 0.05); the time to peak of targeted contrast ultrasound imaging is shorter than that of ordinary ultrasound imaging in the 2-, 3-, 4-, and 5-week groups with statistically significant differences (P < 0.05); there is a positive correlation between the peak intensities of targeted contrast ultrasound imaging and tumor neovascular densities of the ovarian cancer xenografts in the 2-, 3-, and 4-week group (r 2 = 0.645, r 3 = 0.668, and r 4 = 0.693, P < 0.05); there is a negative correlation between the time to peak of targeted contrast ultrasound imaging and tumor neovascular densities of the ovarian cancer xenografts in the 2-, 3-, and 4-week groups (r 2 = -0.669, r 3 = -0.692, and r 4 = -0.704, P < 0.05). Therefore, the targeted contrast-enhanced ultrasound imaging parameters have a certain correlation with tumor neovascular density of ovarian cancer xenografts in nude mice and this correlation is more significant in the early stage of ovarian cancer; hence, targeted contrast-enhanced ultrasound imaging may provide a new method, new idea, and new basis for the diagnosis of early ovarian cancer.
Collapse
Affiliation(s)
- Rong Hu
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Qianqian Zeng
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xiaoling Su
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wenxia Feng
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Hong Xiang
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| |
Collapse
|
7
|
Vishal TMD, Ji-Bin LMD, John EP. Applications in Molecular Ultrasound Imaging: Present and Future. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2019. [DOI: 10.37015/audt.2019.190812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|