1
|
Mesenchymal Stem Cells Promote Intestinal Mucosal Repair by Positively Regulating the Nrf2/Keap1/ARE Signaling Pathway in Acute Experimental Colitis. Dig Dis Sci 2022; 68:1835-1846. [PMID: 36459293 DOI: 10.1007/s10620-022-07722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND/AIMS Mesenchymal stem cells (MSCs) are a type of adult pluripotent stem cell that has anti-inflammatory and immunomodulatory effects, and whose conditioned medium (CM) has also been found to be effective. We used MSC and CM enemas to investigate their ameliorative effects in a mouse model of colitis. METHODS We employed MSCs, CM, and MSCs + ML385 (an inhibitor of Nrf2) in dextran sodium sulfate (DSS)-induced colitis. Mice were sacrificed on day 8, and the effects of MSC or CM treatment on the levels of inflammation and oxidative stress in colonic epithelial cells were evaluated by histological analyses. RESULTS MSCs inhibited inflammatory cell infiltration and proinflammatory cytokine expression in the colon. In addition, MSCs reduced extracellular matrix deposition and maintained the mechanical barrier and permeability of colonic epithelial cells. Mechanistically, MSCs activated Nrf2, which then increased HO-1 and NQO-1 levels and downregulated the expression of Keap1 to suppress reactive oxygen species production and MDA generation, accompanied by increases in components of the enzymatic antioxidant system, including SOD, CAT, GSH-Px, and T-AOC. However, after administering an Nrf2 inhibitor (ML385) to block the Nrf2/Keap1/ARE pathway, we failed to observe protective effects of MSCs in mice with colitis. CM alone also produced some of the therapeutic benefits of MSCs but was not as effective as MSCs. CONCLUSIONS Our data confirmed that MSCs and CM can effectively improve intestinal mucosal repair in experimental colitis and that MSCs can improve this condition by activating the Nrf2/Keap1/ARE pathway.
Collapse
|
2
|
Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y, Zhou P, Szabó G, Zheng S. Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Front Immunol 2022; 12:713920. [PMID: 35024039 PMCID: PMC8744145 DOI: 10.3389/fimmu.2021.713920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Although solid organ transplantation remains the definitive management for patients with end-stage organ failure, this ultimate treatment has been limited by the number of acceptable donor organs. Therefore, efforts have been made to expand the donor pool by utilizing marginal organs from donation after circulatory death or extended criteria donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and entail higher requirements for organ preservation. Recently, machine perfusion has emerged as a novel preservation strategy for marginal grafts. This technique continually perfuses the organs to mimic the physiologic condition, allows the evaluation of pretransplant graft function, and more excitingly facilitates organ reconditioning during perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells (MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ transplantation. Therefore, MSCs are promising candidates for organ reconditioning during machine perfusion. This review provides an overview of the application of MSCs combined with machine perfusion for lung, kidney, liver, and heart preservation and reconditioning. Promising preclinical results highlight the potential clinical translation of this innovative strategy to improve the quality of marginal grafts.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
4
|
Sun D, Yang L, Zheng W, Cao H, Wu L, Song H. Protective Effects of Bone Marrow Mesenchymal Stem Cells (BMMSCS) Combined with Normothermic Machine Perfusion on Liver Grafts Donated After Circulatory Death via Reducing the Ferroptosis of Hepatocytes. Med Sci Monit 2021; 27:e930258. [PMID: 34112750 PMCID: PMC8204680 DOI: 10.12659/msm.930258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To improve the quality of liver grafts from extended-criteria donors donated after circulatory death (DCD), this study explored whether bone marrow mesenchymal stem cells (BMMSCs) combined with normothermic machine perfusion (NMP) have protective effects on DCD donor livers and the effects of ferroptosis in this procedure. MATERIAL AND METHODS Twenty-four male rat DCD donor livers were randomly and averagely divided into normal, static cold storage (SCS), NMP, and NMP combined with BMMSCs groups. Liver function, bile secretion, and pathological features of DCD donor livers were detected to evaluate the protective effects of NMP and BMMSCs on DCD donor livers. Hydrogen peroxide was used to induce an oxidative stress model of hepatocyte IAR-20 cells to evaluate the protective effects of BMMSCs in vitro. RESULTS Livers treated with NMP combined with BMMSCs showed better liver function, relieved histopathological damage, reduced oxidative stress injury and ferroptosis, and the mechanism of reduction was associated with downregulation of intracellular reactive oxygen species (ROS) and free Fe²⁺ levels. BMMSCs showed significant protective effects on the ultrastructure of DCD donor livers and ROS-induced injury to IAR-20 cells under electron microscopy. BMMSCs also significantly improved the expression level of microtubule-associated protein 1 light chain 3 (LC3)-II in both DCD donor livers and ROS-induced injured IAR-20 cells, including upregulating the expression of ferritin. CONCLUSIONS BMMSCs combined with NMP could reduce the level of ROS and free Fe²⁺ in oxidative stress damaged rat DCD donor livers, potentially reduce the ferroptosis in hepatocytes, and repair both morphology and function of DCD donor livers.
Collapse
Affiliation(s)
- Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China (mainland)
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China (mainland)
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland).,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China (mainland)
| | - Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China (mainland).,NHC Key Laboratory of Critical Care Medicine, Tianjin, China (mainland)
| | - Longlong Wu
- School of Medicine, Nankai University, Tianjin, China (mainland)
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland).,Tianjin Key Laboratory of Organ Transplantation, Tianjin, China (mainland)
| |
Collapse
|
5
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
6
|
Sun D, Cao H, Yang L, Lin L, Hou B, Zheng W, Shen Z, Song H. MiR-200b in heme oxygenase-1-modified bone marrow mesenchymal stem cell-derived exosomes alleviates inflammatory injury of intestinal epithelial cells by targeting high mobility group box 3. Cell Death Dis 2020; 11:480. [PMID: 32587254 PMCID: PMC7316799 DOI: 10.1038/s41419-020-2685-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Heme Oxygen-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) are effective to protect and repair transplanted small bowel and intestinal epithelial cells (IECs); however, the mechanism and the role of HO-1/BMMSCs-derived exosomes is unclear. In the present study, we aimed to verify that exosomes from a HO-1/BMMSCs and IEC-6 cells (IEC-6s) co-culture system could reduce the apoptosis of IEC-6s and decrease the expression of the tight junction protein, zona occludens 1, in the inflammatory environment. Using mass spectrometry, we revealed that high mobility group box 3 (HMGB3) and phosphorylated c-Jun NH2-terminal kinase (JNK), under the influence of differentially abundant proteins identified through proteomic analysis, play critical roles in the mechanism. Further studies indicated that microRNA miR-200b, which was upregulated in exosomes derived from the co-culture of HO-1/BMMSCs and IEC-6s, exerted its role by targeting the 3′ untranslated region of Hmgb3 in this biological process. Functional experiments confirmed that miR-200b overexpression could reduce the inflammatory injury of IEC-6s, while intracellular miR-200b knockdown could significantly block the protective effect of HO-1/BMMSCs exosomes on the inflammatory injury of IEC-6s. In addition, the level of miR-200b in cells and exosomes derived from HO-1/BMMSCs stimulated by tumor necrosis factor alpha was significantly upregulated. In a rat small bowel transplantation model of allograft rejection treated with HO-1/BMMSCs, we confirmed that the level of miR-200b in the transplanted small bowel tissue was increased significantly, while the level of HMGB3/JNK was downregulated significantly. In conclusion, we identified that exosomes derived from HO-1/BMMSCs play an important role in alleviating the inflammatory injury of IECs. The mechanism is related to miR-200b targeting the abnormally increased expression of the Hmgb3 gene in IECs induced by inflammatory injury. The reduced level of HMGB3 then decreases the inflammatory injury.
Collapse
Affiliation(s)
- Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China.,Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China
| | - Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China.,NHC Key Laboratory of Critical Care Medicine, 300192, Tianjin, P.R. China
| | - Ling Lin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, P.R. China
| | - Bin Hou
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, P.R. China
| | - Zhongyang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, P.R. China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China. .,Tianjin Key Laboratory of Organ Transplantation, Tianjin, P.R. China.
| |
Collapse
|
7
|
Cao H, Yang L, Hou B, Sun D, Lin L, Song HL, Shen ZY. Heme oxygenase-1-modified bone marrow mesenchymal stem cells combined with normothermic machine perfusion to protect donation after circulatory death liver grafts. Stem Cell Res Ther 2020; 11:218. [PMID: 32503631 PMCID: PMC7275432 DOI: 10.1186/s13287-020-01736-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Donation after circulatory death (DCD) liver grafts have a poor prognosis after transplantation. We investigated whether the outcome of DCD donor organs can be improved by heme oxygenase 1 (HO-1)-modified bone marrow-derived mesenchymal stem cells (BMMSCs) combined with normothermic machine perfusion (NMP), and explored its underlying mechanisms. METHODS BMMSCs were isolated, cultured, and transduced with the HO-1 gene. An NMP system was established. DCD rat livers were obtained, preserved by different methods, and the recipients were divided into 5 groups: sham operation, static cold storage (SCS), NMP, BMMSCs combined with NMP, and HO-1/BMMSCs combined with NMP (HBP) groups. Rats were sacrificed at 1, 7, and 14 days after surgery; their blood and liver tissue samples were collected; and liver enzyme and cytokine levels, liver histology, high-mobility group box 1 (HMGB1) levels in monocytes and liver tissues, and expression of Toll-like receptor 4 (TLR4) pathway-related molecules were evaluated. RESULTS After liver transplantation, the SCS group showed significantly increased transaminase levels, liver tissue damage, and shorter survival time. The HBP group showed lower transaminase levels, intact liver morphology, prolonged survival time, and decreased serum and liver proinflammatory cytokine levels. In the NMP and SCS groups, HMGB1 expression in the serum, monocytes, and liver tissues and TLR4 pathway-related molecule expression were significantly decreased. CONCLUSIONS HO-1/BMMSCs combined with NMP exerted protective effects on DCD donor liver and significantly improved recipient prognosis. The effect of HO-1/BMMSCs was greater than that of BMMSCs and was mediated via HMGB1 expression and TLR4 pathway inhibition.
Collapse
Affiliation(s)
- Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192 People’s Republic of China
| | - Bin Hou
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin, People’s Republic of China
| | - Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
- NHC Key Laboratory of Critical Care Medicine, Tianjin, People’s Republic of China
| | - Ling Lin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192 People’s Republic of China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin, People’s Republic of China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192 People’s Republic of China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China
| |
Collapse
|
8
|
Yang L, Cao H, Sun D, Lin L, Zheng WP, Shen ZY, Song HL. Normothermic Machine Perfusion Combined with Bone Marrow Mesenchymal Stem Cells Improves the Oxidative Stress Response and Mitochondrial Function in Rat Donation After Circulatory Death Livers. Stem Cells Dev 2020; 29:835-852. [PMID: 32253985 PMCID: PMC7336881 DOI: 10.1089/scd.2019.0301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a need to improve the quality of donor liver from donation after circulatory death (DCD). The purpose of this study was to investigate the effects and mechanism of normothermic machine perfusion (NMP) combined with bone marrow mesenchymal stem cells (BMMSCs) on the oxidative stress and mitochondrial function in DCD livers. DCD livers were obtained, a rat NMP system was established, and BMMSCs were extracted and identified. The DCD livers were grouped by their preservation method: Normal, static cold storage (SCS), NMP (P), and NMP combined with BMMSCs (PB), and the preservation time was up to 8 h. An IAR20 cell oxidative stress injury model was established in vitro by simulating DCD oxidative stress injury and coculturing with BMMSCs for 6 h. Compared with SCS group, after 6 h in vitro, the PB and P groups had significantly improved liver function and liver histological damage, reduced hepatocyte apoptosis and oxidative stress, improved hepatocyte mitochondrial damage, and increased mitochondrial membrane potential. These indicators were significantly better in the PB group than in the P group. BMMSCs significantly inhibited reactive oxygen species release from the IAR20 cell oxidative stress model in vitro, ameliorated mitochondrial damage, and increased mitochondrial membrane potential level. BMMSCs also downregulated the JUN N-terminal kinase-nuclear factor kappa B (JNK-NF-κB) signaling pathway significantly in the IAR20 cell oxidative stress model and promoted AMP-activated protein kinase (AMPK) activation. We verified that NMP combined with BMMSCs also played the same role in the PB group. NMP combined with BMMSCs could improve liver quality by relieving oxidative stress injury and improving mitochondrial function in rat DCD livers. The mechanism of protective role might involve inhibiting the JNK-NF-κB pathway to reduce oxidative stress and promote AMPK activation, thereby reducing mitochondrial damage and increase mitochondrial function.
Collapse
Affiliation(s)
- Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, People's Republic of China.,Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, People's Republic of China.,NHC Key Laboratory of Critical Care Medicine, Tianjin, People's Republic of China
| | - Ling Lin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, People's Republic of China
| | - Wei-Ping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, People's Republic of China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, People's Republic of China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Organ Transplantation, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Chen B, You Y, Ma A, Song Y, Jiao J, Song L, Shi E, Zhong X, Li Y, Li C. Zn-Incorporated TiO 2 Nanotube Surface Improves Osteogenesis Ability Through Influencing Immunomodulatory Function of Macrophages. Int J Nanomedicine 2020; 15:2095-2118. [PMID: 32273705 PMCID: PMC7109325 DOI: 10.2147/ijn.s244349] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Zinc (Zn), an essential trace element in the body, has stable chemical properties, excellent osteogenic ability and moderate immunomodulatory property. In the present study, a Zn-incorporated TiO2 nanotube (TNT) was fabricated on titanium (Ti) implant material. We aimed to evaluate the influence of nano-scale topography and Zn on behaviors of murine RAW 264.7 macrophages. Moreover, the effects of Zn-incorporated TNT surface-regulated macrophages on the behaviors and osteogenic differentiation of murine MC3T3-E1 osteoblasts were also investigated. METHODS TNT coatings were firstly fabricated on a pure Ti surface using anodic oxidation, and then nano-scale Zn particles were incorporated onto TNTs by the hydrothermal method. Surface topography, chemical composition, roughness, hydrophilicity, Zn release pattern and protein adsorption ability of the Zn-incorporated TiO2 nanotube surface were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), surface profiler, contact angle test, Zn release test and protein adsorption test. The cell behaviors and both pro-inflammatory (M1) and pro-regenerative (M2) marker gene and protein levels in macrophages cultured on Zn-incorporated TNTs surfaces with different TNT diameters were detected. The supernatants of macrophages were extracted and preserved as conditioned medium (CM). Furthermore, the behaviors and osteogenic properties of osteoblasts cultured in CM on various surfaces were evaluated. RESULTS The release profile of Zn on Zn-incorporated TNT surfaces revealed a controlled release pattern. Macrophages cultured on Zn-incorporated TNT surfaces displayed enhanced gene and protein expression of M2 markers, and M1 markers were moderately inhibited, compared with the LPS group (the inflammation model). When cultured in CM, osteoblasts cultured on Zn-incorporated TNTs showed strengthened cell proliferation, adhesion, osteogenesis-related gene expression, alkaline phosphatase activity and extracellular mineralization, compared with their TNT counterparts and the Ti group. CONCLUSION This study suggests that the application of Zn-incorporated TNT surfaces may establish an osteogenic microenvironment and accelerate bone formation. It provided a promising strategy of Ti surface modification for a better applicable prospect.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yapeng You
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Aobo Ma
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jian Jiao
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Liting Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Enyu Shi
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
11
|
Wang B, Huang C, Chen L, Xu D, Zheng G, Zhou Y, Wang X, Zhang X. The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells. ACS Biomater Sci Eng 2019; 6:798-812. [PMID: 33464852 DOI: 10.1021/acsbiomaterials.9b01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Hu C, Li L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med 2019; 17:412. [PMID: 31823784 PMCID: PMC6905033 DOI: 10.1186/s12967-019-02167-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
The liver is supplied by a dual blood supply, including the portal venous system and the hepatic arterial system; thus, the liver organ is exposed to multiple gut microbial products, metabolic products, and toxins; is sensitive to extraneous pathogens; and can develop liver failure, liver cirrhosis and hepatocellular carcinoma (HCC) after short-term or long-term injury. Although liver transplantation (LT) serves as the only effective treatment for patients with end-stage liver diseases, it is not very popular because of the complications and low survival rates. Although the liver is generally termed an immune and tolerogenic organ with adaptive systems consisting of humoral immunity and cell-mediated immunity, a high rejection rate is still the main complication in patients with LT. Growing evidence has shown that mesenchymal stromal cell (MSC) transplantation could serve as an effective immunomodulatory strategy to induce tolerance in various immune-related disorders. MSCs are reported to inhibit the immune response from innate immune cells, including macrophages, dendritic cells (DCs), natural killer cells (NK cells), and natural killer T (NKT) cells, and that from adaptive immune cells, including T cells, B cells and other liver-specific immune cells, for the generation of a tolerogenic microenvironment. In this review, we summarized the relationship between LT and immunoregulation, and we focused on how to improve the effects of MSC transplantation to improve the prognosis of LT. Only after exhaustive clarification of the potential immunoregulatory mechanisms of MSCs in vitro and in vivo can we implement MSC protocols in routine clinical practice to improve LT outcome.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Sun D, Song H, Shen Z. [Research progress in mesenchymal stem cells modified by Heme oxygenase 1]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:901-906. [PMID: 31298011 PMCID: PMC8337431 DOI: 10.7507/1002-1892.201812079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/15/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the literature reports on research progress of Heme oxygenase 1 (HO-1) modified mesenchymal stem cells (MSCs). METHODS The significance, effects, and related mechanism of HO-1 modification of MSCs were summarized by consulting the related literatures and reports of HO-1 modification of MSCs. RESULTS HO-1 modification of MSCs has important research value. It can effectively enhance the anti-oxidative stress and anti-apoptotic properties of MSCs in complex internal environment after transplantation into vivo. It can also effectively enhance the immune regulation function of MSCs. It can improve the anti-injury, repair, and immune regulation effect of MSCs in various disease models and research fields. CONCLUSION The basic research of HO-1 modified MSCs has made remarkable progress, which is expected to be applied in clinical trials and provide theoretical basis and reference value for stem cell therapy.
Collapse
Affiliation(s)
- Dong Sun
- The First Central Clinical College, Tianjin Medical University, Tianjin, 300192, P.R.China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin Key Laboratory of Organ Transplantation, Key Laboratory of Transplantation Medicine, Chinese Academy of Medical Sciences, Tianjin, 300192,
| | - Zhongyang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin Key Laboratory of Organ Transplantation, Key Laboratory of Transplantation Medicine, Chinese Academy of Medical Sciences, Tianjin, 300192, P.R.China
| |
Collapse
|
14
|
Nrf2/Keap1/ARE Signaling Mediated an Antioxidative Protection of Human Placental Mesenchymal Stem Cells of Fetal Origin in Alveolar Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2654910. [PMID: 31217836 PMCID: PMC6537011 DOI: 10.1155/2019/2654910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
The oxidative stresses are a major insult in pulmonary injury such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), two clinical manifestations of acute respiratory failure with substantially high morbidity and mortality. Mesenchymal stem cells (MSCs) hold a promise in treatments of many human diseases, mainly owing to their capacities of immunoregulation and antioxidative activity. The strong immunoregulatory role of human placental MSCs of fetal origin (hfPMSCs) has been previously demonstrated; their antioxidant activity, however, has yet been interrogated. In this report, we examined the antioxidative activity of hfPMSCs by accessing the ability to scavenge oxidants and radicals and to protect alveolar epithelial cells from antioxidative injury using both a cell coculture model and a conditioned culture medium (CM) of hfPMSCs. Results showed a comparable antioxidative capacity of the CM with 100 μM of vitamin C (VC) in terms of the total antioxidant capacity (T-AOC), scavenging abilities of free radicals DPPH, hydroxyl radical (·OH), and superoxide anion radical (O2−), as well as activities of antioxidant enzymes of SOD and GSH-PX. Importantly, both of the CM alone and cocultures of hfPMSCs displayed a protection of A549 alveolar epithelial cells from oxidative injury of 600 μM hydrogen peroxide (H2O2) exposure, as determined in monolayer and transwell coculture models, respectively. Mechanistically, hfPMSCs and their CM could significantly reduce the apoptotic cell fraction of alveolar epithelial A549 cells exposed to H2O2, accompanied with an increased expression of antiapoptotic proteins Bcl-2, Mcl-1, Nrf-2, and HO-1 and decreased proapoptotic proteins Bax, caspase 3, and Keap1, in comparison with naïve controls. Furthermore, hfPMSCs-CM (passage 3) collected from cultures exposed an inhibition of the Nrf2/Keap1/ARE signaling pathway which led to a significant reduction in caspase 3 expression in A549 cells, although the addition of Nrf2 inhibitor ML385 had no effect on the antioxidative activity of hfPMSCs-CM. These data clearly suggested that hfPMSCs protected the H2O2-induced cell oxidative injury at least in part by regulating the Nrf2-Keap1-ARE signaling-mediated cell apoptosis. Our study thus provided a new insight into the antioxidative mechanism and novel functions of hfPMSCs as antioxidants in disease treatments, which is warranted for further investigations.
Collapse
|