1
|
Chen Y, Xu X, Wang M, Wang X, Wang Y, Zhang Y, Huang J, Tao Y, Fan W, Zhao L, Liu L, Fan Z. Moxifloxacin promotes two-photon microscopic imaging for discriminating different stages of DSS-induced colitis on mice. Photodiagnosis Photodyn Ther 2024; 48:104220. [PMID: 38777309 DOI: 10.1016/j.pdpdt.2024.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Accurate diagnosis of patients with ulcerative colitis (UC) can reduce their risk of developing colorectal cancer. This study intended to explore whether moxifloxacin, an agent with fluorescence potential, could promote two-photon microscopy (TPM) diagnosis for mice with dextran sodium sulfate (DSS)-induced colitis, which could imitate human UC. METHODS 32 Balb/c mice were randomly divided into 4 groups: control, acute colitis, remission colitis and chronic colitis. Fluorescence parameters, imaging performance, and tissue features of different mouse models were compared under moxifloxacin-assisted TPM and label-free TPM. RESULTS Excitation wavelength of 720 nm and moxifloxacin labeling time of 2 min was optimal for moxifloxacin-assisted TPM. With moxifloxacin labeling for colonic tissues, excitation power was decreased to 1/10 of that without labeling while fluorescence intensity was increased to 10-fold of that without labeling. Photobleaching was negligible after moxifloxacin labeling and moxifloxacin fluorescence kept stable within 2 h. Compared with the control group, moxifloxacin fluorescence was reduced in the three colitis groups (P < 0.05). Meanwhile, the proportion of enhanced moxifloxacin fluorescence regions was (22.4 ± 1.6)%, (7.7 ± 1.0)%, (13.5 ± 1.7)% and (5.0 ± 1.3)% in the control, acute, remission and chronic groups respectively, with significant reduction in the three colitis groups (P < 0.05). Besides, variant tissue features of experimental colitis models were presented under moxifloxacin-assisted TPM, such as crypt opening, glandular structure, adjacent glandular space and moxifloxacin distribution. CONCLUSIONS With unique biological interaction between moxifloxacin and colonic mucosa, moxifloxacin-assisted TPM imaging is feasible and effective for accurate diagnosis of different stages of experimental colitis.
Collapse
Affiliation(s)
- Yingtong Chen
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoyi Xu
- National Laboratory of Solid State Microstructure of Nanjing University, Nanjing 210093, China
| | - Min Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiang Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yan Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining 835000, China
| | - Yong Zhang
- National Laboratory of Solid State Microstructure of Nanjing University, Nanjing 210093, China
| | - Jin Huang
- Gastroenterology Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yuwen Tao
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wentao Fan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China
| | - Lili Zhao
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Li Liu
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Gusu College of Nanjing Medical University, Suzhou 215000, China.
| | - Zhining Fan
- Department of Digestive Endoscopy, Jiangsu Province Hospital and The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Changzhou Medical Center of Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
2
|
Hong SM, Baek DH. Diagnostic Procedures for Inflammatory Bowel Disease: Laboratory, Endoscopy, Pathology, Imaging, and Beyond. Diagnostics (Basel) 2024; 14:1384. [PMID: 39001273 PMCID: PMC11241288 DOI: 10.3390/diagnostics14131384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Diagnosing inflammatory bowel disease (IBD) can often be challenging, and differentiating between Crohn's disease and ulcerative colitis can be particularly difficult. Diagnostic procedures for IBD include laboratory tests, endoscopy, pathological tests, and imaging tests. Serological and stool tests can be easily performed in an outpatient setting and provide critical diagnostic clues. Although endoscopy is an invasive procedure, it offers essential diagnostic information and allows for tissue biopsy and therapeutic procedures. Video capsule endoscopy and device-assisted enteroscopy are endoscopic procedures used to evaluate the small bowel. In addition to endoscopy, magnetic resonance imaging, computed tomography, and ultrasound (US) are valuable tools for small bowel assessment. Among these, US is noninvasive and easily utilized, making its use highly practical in daily clinical practice. Endoscopic biopsy aids in the diagnosis of IBD and is crucial for assessing the histological activity of the disease, facilitating a thorough evaluation of disease remission, and aiding in the development of treatment strategies. Recent advances in artificial intelligence hold promise for enhancing various aspects of IBD management, including diagnosis, monitoring, and precision medicine. This review compiles current procedures and promising future tools for the diagnosis of IBD, providing comprehensive insights.
Collapse
Affiliation(s)
- Seung Min Hong
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Dong Hoon Baek
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
3
|
Walsh M, Rahman S, Gologorsky R, Tsikitis VL. Colorectal Neoplasia in the Setting of Inflammatory Bowel Disease. Surg Clin North Am 2024; 104:673-684. [PMID: 38677829 DOI: 10.1016/j.suc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Inflammatory bowel disease (IBD) is associated with an increased risk of colorectal cancer (colorectal adenocarcinoma [CRC]) compared with the general population. IBD-related CRC is related to poorer outcomes than non-IBD-related CRC, and it accounts for 10% to 15% of death in patients with IBD. As such, screening guidelines have been made specific to this population recommending shorter intervals of endoscopic screening to detect dysplasia and CRC relative to the general population. Advances in endoscopic technology allow for improved visualization of dysplasia, which has led to widespread adoption of dye-spray chromoendoscopy with targeted biopsy.
Collapse
Affiliation(s)
- Maura Walsh
- Department of General Surgery, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road L-579, Portland, OR 97239, USA.
| | - Shahrose Rahman
- Department of Surgery, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road L-579, Portland, OR 97239, USA
| | - Rebecca Gologorsky
- Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road L-579, Portland, OR 97239, USA
| | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road L-579, Portland, OR 97239, USA
| |
Collapse
|
4
|
Ristea ME, Zarnescu O. Indigo Carmine: Between Necessity and Concern. J Xenobiot 2023; 13:509-528. [PMID: 37754845 PMCID: PMC10532910 DOI: 10.3390/jox13030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Dyes, such as indigo carmine, have become indispensable to modern life, being widely used in the food, textile, pharmaceutical, medicine, and cosmetic industry. Although indigo carmine is considered toxic and has many adverse effects, it is found in many foods, and the maximum permitted level is 500 mg/kg. Indigo carmine is one of the most used dyes in the textile industry, especially for dyeing denim, and it is also used in medicine due to its impressive applicability in diagnostic methods and surgical procedures, such as in gynecological and urological surgeries and microsurgery. It is reported that indigo carmine is toxic for humans and can cause various pathologies, such as hypertension, hypotension, skin irritations, or gastrointestinal disorders. In this review, we discuss the structure and properties of indigo carmine; its use in various industries and medicine; the adverse effects of its ingestion, injection, or skin contact; the effects on environmental pollution; and its toxicity testing. For this review, 147 studies were considered relevant. Most of the cited articles were those about environmental pollution with indigo carmine (51), uses of indigo carmine in medicine (45), and indigo carmine as a food additive (17).
Collapse
Affiliation(s)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania;
| |
Collapse
|
5
|
Zammarchi I, Santacroce G, Iacucci M. Next-Generation Endoscopy in Inflammatory Bowel Disease. Diagnostics (Basel) 2023; 13:2547. [PMID: 37568910 PMCID: PMC10417286 DOI: 10.3390/diagnostics13152547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Endoscopic healing is recognized as a primary treatment goal in Inflammatory Bowel Disease (IBD). However, endoscopic remission may not reflect histological remission, which is crucial to achieving favorable long-term outcomes. The development of new advanced techniques has revolutionized the field of IBD assessment and management. These tools can accurately assess vascular and mucosal features, drawing endoscopy closer to histology. Moreover, they can enhance the detection and characterization of IBD-related dysplasia. Given the persistent challenge of interobserver variability, a more standardized approach to endoscopy is warranted, and the integration of artificial intelligence (AI) holds promise for addressing this limitation. Additionally, although molecular endoscopy is still in its infancy, it is a promising tool to forecast response to therapy. This review provides an overview of advanced endoscopic techniques, including dye-based and dye-less chromoendoscopy, and in vivo histological examinations with probe-based confocal laser endomicroscopy and endocytoscopy. The remarkable contribution of these tools to IBD management, especially when integrated with AI, is discussed. Specific attention is given to their role in improving disease assessment, detection, and characterization of IBD-associated lesions, and predicting disease-related outcomes.
Collapse
Affiliation(s)
| | | | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 R229 Cork, Ireland; (I.Z.); (G.S.)
| |
Collapse
|
6
|
Biamonte P, D’Amico F, Fasulo E, Barà R, Bernardi F, Allocca M, Zilli A, Danese S, Furfaro F. New Technologies in Digestive Endoscopy for Ulcerative Colitis Patients. Biomedicines 2023; 11:2139. [PMID: 37626636 PMCID: PMC10452412 DOI: 10.3390/biomedicines11082139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the colon and rectum. Endoscopy plays a crucial role in the diagnosis and management of UC. Recent advancements in endoscopic technology, including chromoendoscopy, confocal laser endomicroscopy, endocytoscopy and the use of artificial intelligence, have revolutionized the assessment and treatment of UC patients. These innovative techniques enable early detection of dysplasia and cancer, more precise characterization of disease extent and severity and more targeted biopsies, leading to improved diagnosis and disease monitoring. Furthermore, these advancements have significant implications for therapeutic decision making, empowering clinicians to carefully consider a range of treatment options, including pharmacological therapies, endoscopic interventions and surgical approaches. In this review, we provide an overview of the latest endoscopic technologies and their applications for diagnosing and monitoring UC. We also discuss their impact on treatment decision making, highlighting the potential benefits and limitations of each technique.
Collapse
Affiliation(s)
- Paolo Biamonte
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Ernesto Fasulo
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Rukaia Barà
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| |
Collapse
|
7
|
Colorectal Cancer in Ulcerative Colitis: Mechanisms, Surveillance and Chemoprevention. Curr Oncol 2022; 29:6091-6114. [PMID: 36135048 PMCID: PMC9498229 DOI: 10.3390/curroncol29090479] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with ulcerative colitis (UC) are at a two- to three-fold increased risk of developing colorectal cancer (CRC) than the general population based on population-based data. UC-CRC has generated a series of clinical problems, which are reflected in its worse prognosis and higher mortality than sporadic CRC. Chronic inflammation is a significant contributor to the development of UC-CRC, so comprehending the relationship between the proinflammatory factors and epithelial cells together with downstream signaling pathways is the core to elucidate the mechanisms involved in developing of CRC. Clinical studies have shown the importance of early prevention, detection and management of CRC in patients with UC, and colonoscopic surveillance at regular intervals with multiple biopsies is considered the most effective way. The use of endoscopy with targeted biopsies of visible lesions has been supported in most populations. In contrast, random biopsies in patients with high-risk characteristics have been suggested during surveillance. Some of the agents used to treat UC are chemopreventive, the effects of which will be examined in cancers in UC in a population-based setting. In this review, we outline the current state of potential risk factors and chemopreventive recommendations in UC-CRC, with a specific focus on the proinflammatory mechanisms in promoting CRC and evidence for personalized surveillance.
Collapse
|
8
|
Bojarski C, Waldner M, Rath T, Schürmann S, Neurath MF, Atreya R, Siegmund B. Innovative Diagnostic Endoscopy in Inflammatory Bowel Diseases: From High-Definition to Molecular Endoscopy. Front Med (Lausanne) 2021; 8:655404. [PMID: 34368180 PMCID: PMC8333704 DOI: 10.3389/fmed.2021.655404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
High-definition endoscopy is one essential step in the initial diagnosis of inflammatory bowel disease (IBD) characterizing the extent and severity of inflammation, as well as discriminating ulcerative colitis (UC) from Crohn's disease (CD). Following general recommendations and national guidelines, individual risk stratification should define the appropriate surveillance strategy, biopsy protocol and frequency of endoscopies. Beside high-definition videoendoscopy the application of dyes applied via a spraying catheter is of additional diagnostic value with a higher detection rate of intraepithelial neoplasia (IEN). Virtual chromoendoscopy techniques (NBI, FICE, I-scan, BLI) should not be recommended as a single surveillance strategy in IBD, although newer data suggest a higher comparability to dye-based chromoendoscopy than previously assumed. First results of oral methylene blue formulation are promising for improving the acceptance rate of classical chromoendoscopy. Confocal laser endomicroscopy (CLE) is still an experimental but highly innovative endoscopic procedure with the potential to contribute to the detection of dysplastic lesions. Molecular endoscopy in IBD has taken application of CLE to a higher level and allows topical application of labeled probes, mainly antibodies, against specific target structures expressed in the tissue to predict response or failure to biological therapies. First pre-clinical and in vivo data from label-free multiphoton microscopy (MPM) are now available to characterize mucosal and submucosal inflammation on endoscopy in more detail. These new techniques now have opened the door to individualized and highly specific molecular imaging in IBD in the future and pave the path to personalized medicine approaches. The quality of evidence was stated according to the Oxford Center of evidence-based medicine (March 2009). For this review a Medline search up to January 2021 was performed using the words “inflammatory bowel disease,” “ulcerative colitis,” “crohn's disease,” “chromoendoscopy,” “high-definition endoscopy,” “confocal laser endomicroscopy,” “confocal laser microscopy,” “molecular imaging,” “multiphoton microscopy.”
Collapse
Affiliation(s)
- Christian Bojarski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Medicine (Gastroenterology, Infectious diseases, Rheumatology), Berlin, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Britta Siegmund
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Medicine (Gastroenterology, Infectious diseases, Rheumatology), Berlin, Germany
| |
Collapse
|
9
|
Buchner AM. Endoscopic Management of Complex Lesions in Patients With Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 2021; 17:121-127. [PMID: 34035771 PMCID: PMC8132716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated dysplastic lesions. Surveil-lance colonoscopy with endoscopic imaging techniques such as chromoendoscopy has been suggested. However, complex dysplastic lesions of larger size, challenging location behind folds, and nonpolypoid morphology defy standard polypectomy techniques and require advanced management with endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD). When technically feasible for visible dysplasia with distinct margins, these endoscopic procedures have replaced the traditional approach of surgical management. Recent guidelines support careful endoscopic inspection of the colonic mucosa with high-definition colonoscopes and the application of imaging techniques such as chromoendoscopy to enhance lesion detection and characterization as well as to help determine whether endoscopic management is an effective alternative to colectomy. Endoscopic resection techniques such as EMR and ESD have become key modalities in the management of endoscopically resectable dysplasia in patients with IBD.
Collapse
Affiliation(s)
- Anna M Buchner
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Ohira H, Tsuruya A, Oikawa D, Nakagawa W, Mamoto R, Hattori M, Waki T, Takahashi S, Fujioka Y, Nakayama T. Alteration of oxidative-stress and related marker levels in mouse colonic tissues and fecal microbiota structures with chronic ethanol administration: Implications for the pathogenesis of ethanol-related colorectal cancer. PLoS One 2021; 16:e0246580. [PMID: 33577585 PMCID: PMC7880462 DOI: 10.1371/journal.pone.0246580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Chronic ethanol consumption is a risk factor for colorectal cancer, and ethanol-induced reactive oxygen species have been suggested to play important roles in the pathogenesis of ethanol-related colorectal cancer (ER-CRC). In this study, the effects of 10-week chronic administration of ethanol on the colonic levels of oxidative stress and advance glycation end product (AGE) levels, as well as fecal microbiota structures, were examined in a mouse model. Chronic oral administration of ethanol in mice (1.0 mL of 1.5% or 5.0% ethanol (v/v) per day per mouse, up to 10 weeks) resulted in the elevation of colonic levels of oxidative stress markers (such as 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal) compared to control mice, and this was consistently accompanied by elevated levels of inflammation-associated cytokines and immune cells (Th17 and macrophages) and a decreased level of regulatory T (Treg) cells to produce colonic lesions. It also resulted in an alteration of mouse fecal microbiota structures, reminiscent of the alterations observed in human inflammatory bowel disease, and this appeared to be consistent with the proposed sustained generation of oxidative stress in the colonic environment during chronic ethanol consumption. Moreover, the first experimental evidence that chronic ethanol administration results in elevated levels of advanced glycation end products (AGEs) and their receptors (RAGE) in the colonic tissues in mice is also shown, implying enhanced RAGE-mediated signaling with chronic ethanol administration. The RAGE-mediated signaling pathway has thus far been implicated as a link between the accumulation of AGEs and the development of many types of chronic colitis and cancers. Thus, enhancement of this pathway likely exacerbates the ethanol-induced inflammatory states of colonic tissues and might at least partly contribute to the pathogenesis of ER-CRC.
Collapse
Affiliation(s)
- Hideo Ohira
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Atsuki Tsuruya
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Daiki Oikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Wao Nakagawa
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Rie Mamoto
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Masahira Hattori
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshiyuki Waki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
van der Laan JJH, van der Waaij AM, Gabriëls RY, Festen EAM, Dijkstra G, Nagengast WB. Endoscopic imaging in inflammatory bowel disease: current developments and emerging strategies. Expert Rev Gastroenterol Hepatol 2021; 15:115-126. [PMID: 33094654 DOI: 10.1080/17474124.2021.1840352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Developments in enhanced and magnified endoscopy have signified major advances in endoscopic imaging of ileocolonic pathology in inflammatory bowel disease (IBD). Artificial intelligence is increasingly being used to augment the benefits of these advanced techniques. Nevertheless, treatment of IBD patients is frustrated by high rates of non-response to therapy, while delayed detection and failures to detect neoplastic lesions impede successful surveillance. A possible solution is offered by molecular imaging, which adds functional imaging data to mucosal morphology assessment through visualizing biological parameters. Other label-free modalities enable visualization beyond the mucosal surface without the need of tracers. AREAS COVERED A literature search up to May 2020 was conducted in PubMed/MEDLINE in order to find relevant articles that involve the (pre-)clinical application of high-definition white light endoscopy, chromoendoscopy, artificial intelligence, confocal laser endomicroscopy, endocytoscopy, molecular imaging, optical coherence tomography, and Raman spectroscopy in IBD. EXPERT OPINION Enhanced and magnified endoscopy have enabled an improved assessment of the ileocolonic mucosa. Implementing molecular imaging in endoscopy could overcome the remaining clinical challenges by giving practitioners a real-time in vivo view of targeted biomarkers. Label-free modalities could help optimize the endoscopic assessment of mucosal healing and dysplasia detection in IBD patients.
Collapse
Affiliation(s)
- Jouke J H van der Laan
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Anne M van der Waaij
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Ruben Y Gabriëls
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| |
Collapse
|
12
|
Dekker E, Houwen BBSL, Puig I, Bustamante-Balén M, Coron E, Dobru DE, Kuvaev R, Neumann H, Johnson G, Pimentel-Nunes P, Sanders DS, Dinis-Ribeiro M, Arvanitakis M, Ponchon T, East JE, Bisschops R. Curriculum for optical diagnosis training in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2020; 52:899-923. [PMID: 32882737 DOI: 10.1055/a-1231-5123] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This manuscript represents an official Position Statement of the European Society of Gastrointestinal Endoscopy (ESGE) aiming to guide general gastroenterologists to develop and maintain skills in optical diagnosis during endoscopy. In general, this requires additional training beyond the core curriculum currently provided in each country. In this context, ESGE have developed a European core curriculum for optical diagnosis practice across Europe for high quality optical diagnosis training. 1: ESGE suggests that every endoscopist should have achieved general competence in upper and/or lower gastrointestinal (UGI/LGI) endoscopy before commencing training in optical diagnosis of the UGI/LGI tract, meaning personal experience of at least 300 UGI and/or 300 LGI endoscopies and meeting the ESGE quality measures for UGI/LGI endoscopy. ESGE suggests that every endoscopist should be able and competent to perform UGI/LGI endoscopy with high definition white light combined with virtual and/or dye-based chromoendoscopy before commencing training in optical diagnosis. 2: ESGE suggests competency in optical diagnosis can be learned by attending a validated optical diagnosis training course based on a validated classification, and self-learning with a minimum number of lesions. If no validated training course is available, optical diagnosis can only be learned by attending a non-validated onsite training course and self-learning with a minimum number of lesions. 3: ESGE suggests endoscopists are competent in optical diagnosis after meeting the pre-adoption and learning criteria, and meeting competence thresholds by assessing a minimum number of lesions prospectively during real-time endoscopy. ESGE suggests ongoing in vivo practice by endoscopists to maintain competence in optical diagnosis. If a competent endoscopist does not perform in vivo optical diagnosis on a regular basis, ESGE suggests repeating the learning and competence phases to maintain competence.Key areas of interest were optical diagnosis training in Barrett's esophagus, esophageal squamous cell carcinoma, early gastric cancer, diminutive colorectal lesions, early colorectal cancer, and neoplasia in inflammatory bowel disease. Condition-specific recommendations are provided in the main document.
Collapse
Affiliation(s)
- Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centre, location Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centre, location Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ignasi Puig
- Digestive Diseases Department, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Spain.,Department of Medicine, Facultat de Ciències de la Salut, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Manresa, Spain
| | - Marco Bustamante-Balén
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain.,Gastrointestinal Endoscopy Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Emmanuel Coron
- Institut des Maladies de l'Appareil Digestif (IMAD), CHU Nantes, Université Nantes, Nantes, France
| | - Daniela E Dobru
- Gastroenterology Department, County Hospital Mures, Targu Mures, Romania
| | - Roman Kuvaev
- Endoscopy Department, Yaroslavl Regional Cancer Hospital, Yaroslavl, Russian Federation.,Department of Gastroenterology, Faculty of Additional Professional Education, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Helmut Neumann
- Department of Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Gavin Johnson
- Department of Gastroenterology, University College London Hospitals, London, UK
| | - Pedro Pimentel-Nunes
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal.,Center for Research in Health Technologies and Information Systems (CINTESIS), Faculty of Medicine, University of Porto, Porto, Portugal.,Surgery and Physiology Department, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - David S Sanders
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, UK
| | - Mario Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal.,Center for Research in Health Technologies and Information Systems (CINTESIS), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marianna Arvanitakis
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Erasme University Hospital, Brussels, Belgium
| | - Thierry Ponchon
- Gastroenterology Division, Hôpital Edouard Herriot, Lyon, France
| | - James E East
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, Catholic University of Leuven (KUL), TARGID, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Iacucci M, Cannatelli R, Tontini GE, Panaccione R, Danese S, Fiorino G, Matsumoto T, Kochhar GS, Shen B, Kiesslich R, Ghosh S. Improving the quality of surveillance colonoscopy in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2020; 4:971-983. [PMID: 31696831 DOI: 10.1016/s2468-1253(19)30194-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Several recommendations have addressed the topic of improving the quality of surveillance colonoscopy in inflammatory bowel disease. However, there is variation between these recommendations, in part due to the absence of well-defined quality indicators, suggesting that these quality indicators should be studied and developed. We did a systematic review of evidence related to surveillance colonoscopy in inflammatory bowel disease to look at the different variables in this practice and offer a critique of the quality control measures before, during, and after the procedure. We identified several key quality measures that could be adopted in clinical practice, including control of inflammation, optimal bowel preparation, ideal time allocation, training, sedation, detection and characterisation of lesions, therapeutic management of the lesions, and colonoscopic reports. However, further primary research and consensus reports are needed to continue developing roadmaps at a global level.
Collapse
Affiliation(s)
- Marietta Iacucci
- Institute of Translational of Medicine, NIHR Biomedical Research Centre, University of Birmingham and University Hospitals, Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Immunology and Immunotherapy, NIHR Biomedical Research Centre, University of Birmingham and University Hospitals, Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Rosanna Cannatelli
- Institute of Translational of Medicine, NIHR Biomedical Research Centre, University of Birmingham and University Hospitals, Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Immunology and Immunotherapy, NIHR Biomedical Research Centre, University of Birmingham and University Hospitals, Birmingham NHS Foundation Trust, Birmingham, UK; Department of Gastroenterology, Spedali Civili di Brescia, University of Milan, Milan, Italy
| | - Gian Eugenio Tontini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Remo Panaccione
- Department of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Silvio Danese
- Inflammatory Bowel Diseases Center, Department of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gionata Fiorino
- Inflammatory Bowel Diseases Center, Department of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Takayuki Matsumoto
- Department of Gastroenterology, Iwate Medical University, Morioka, Japan
| | - Gursimran S Kochhar
- Department of Gastroenterology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Bo Shen
- Department of Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Kiesslich
- Department of Medicine, Helios HSK Wiesbaden, Wiesbaden, Germany
| | - Subrata Ghosh
- Institute of Translational of Medicine, NIHR Biomedical Research Centre, University of Birmingham and University Hospitals, Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Immunology and Immunotherapy, NIHR Biomedical Research Centre, University of Birmingham and University Hospitals, Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
14
|
SAGES TAVAC safety and efficacy analysis confocal laser endomicroscopy. Surg Endosc 2020; 35:2091-2103. [PMID: 32405892 DOI: 10.1007/s00464-020-07607-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Confocal laser endomicroscopy (CLE) is a novel endoscopic adjunct that allows real-time in vivo histological examination of mucosal surfaces. By using intravenous or topical fluorescent agents, CLE highlights certain mucosal elements that facilitate an optical biopsy in real time. CLE technology has been used in different organ systems including the gastrointestinal tract. There has been numerous studies evaluating this technology in gastrointestinal endoscopy, our aim was to evaluate the safety, value, and efficacy of this technology in the gastrointestinal tract. METHODS The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) Technology and Value Assessment Committee (TAVAC) performed a PubMed/Medline database search of clinical studies involving CLE in May of 2018. The literature search used combinations of the keywords: confocal laser endomicroscopy, pCLE, Cellvizio, in vivo microscopy, optical histology, advanced endoscopic imaging, and optical diagnosis. Bibliographies of key references were searched for relevant studies not covered by the PubMed search. Case reports and small case series were excluded. The manufacturer's website was also used to identify key references. The United States Food and Drug Administration (U.S. FDA) Manufacturer And User facility and Device Experience (MAUDE) database was searched for reports regarding the device malfunction or injuries. RESULTS The technology offers an excellent safety profile with rare adverse events related to the use of fluorescent agents. It has been shown to increase the detection of dysplastic Barrett's esophagus, gastric intraepithelial neoplasia/early gastric cancer, and dysplasia associated with inflammatory bowel disease when compared to standard screening protocols. It also aids in the differentiation and classification of colorectal polyps, indeterminate biliary strictures, and pancreatic cystic lesions. CONCLUSIONS CLE has an excellent safety profile. CLE can increase the diagnostic accuracy in a number of gastrointestinal pathologies.
Collapse
|
15
|
Imperatore N, Castiglione F, Testa A, De Palma GD, Caporaso N, Cassese G, Rispo A. Augmented Endoscopy for Surveillance of Colonic Inflammatory Bowel Disease: Systematic Review With Network Meta-analysis. J Crohns Colitis 2019; 13:714-724. [PMID: 30597029 DOI: 10.1093/ecco-jcc/jjy218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Considering the high risk of dysplasia and cancer in inflammatory bowel disease [IBD], surveillance is advocated. However, international guidelines do not reach a uniform recommendation on the way to perform surveillance. We performed a systematic review with a meta-analysis to assess the best endoscopic surveillance strategy in colonic IBD. METHODS The systematic review was performed in PubMed/MEDLINE, EMBASE, SCOPUS, and Cochrane databases to identify studies comparing white light endoscopy [WLE] and augmented endoscopy [AE] in the detection of dysplasia/neoplasia in colonic IBD. A sub-analysis between dye-spray chromoendoscopy [DCE], narrow-band imaging [NBI], I-SCAN, full-spectrum endoscopy [FUSE], and auto-fluorescence imaging [AFI] was also performed. Furthermore, a meta-regression and a network meta-analysis were also performed. RESULTS A total of 27 studies [6167 IBD patients with 2024 dysplastic lesions] met the inclusion criteria. There was no publication bias. AE showed a higher likelihood of detecting dysplasia than WLE (19.3% vs 8.5%, odds ratio [OR] = 2.036), with an incremental yield [IY] of 10.8%. DCE [OR = 2.605] and AFI [OR = 3.055] had higher likelihood of detecting dysplasia than WLE; otherwise, I-SCAN [OR = 1.096], NBI [OR = 0.650], and FUSE [OR = 1.118] were not superior to WLE. Dysplasia was found in 1256/7267 targeted biopsies [17.3%] and in 363/110 040 random biopsies [0.33%] [OR = 66.559, IY = 16.9%]. Meta-regression found no variable impacting on the efficacy of AE techniques. Network meta-analysis identified a significant superiority of DCE to WLE in detecting dysplasia [OR 2.12], but no other single technique was found to be superior to all others in dysplasia detection. CONCLUSIONS DCE was associated with higher likelihood of discovering dysplastic lesions than WLE. Chromoendoscopy is the best supported endoscopic technique for IBD surveillance.
Collapse
Affiliation(s)
- Nicola Imperatore
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine 'Federico II' of Naples, Naples, Italy
| | - Fabiana Castiglione
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine 'Federico II' of Naples, Naples, Italy
| | - Anna Testa
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine 'Federico II' of Naples, Naples, Italy
| | - Giovanni Domenico De Palma
- Surgical Endoscopy, Department of Clinical Medicine and Surgery, School of Medicine 'Federico II' of Naples, Naples, Italy
| | - Nicola Caporaso
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine 'Federico II' of Naples, Naples, Italy
| | - Gianluca Cassese
- Surgical Endoscopy, Department of Clinical Medicine and Surgery, School of Medicine 'Federico II' of Naples, Naples, Italy
| | - Antonio Rispo
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine 'Federico II' of Naples, Naples, Italy
| |
Collapse
|
16
|
Pandurangan AK, Divya T, Kumar K, Dineshbabu V, Velavan B, Sudhandiran G. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J Gastrointest Oncol 2018; 10:244-259. [PMID: 30254720 PMCID: PMC6147765 DOI: 10.4251/wjgo.v10.i9.244] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis (CRC) imposes a major health burden in developing countries. It is the third major cause of cancer deaths. Despite several treatment strategies, novel drugs are warranted to reduce the severity of this disease. Adenomatous polyps in the colon are the major culprits in CRC and found in 45% of cancers, especially in patients 60 years of age. Inflammatory polyps are currently gaining attention in CRC, and a growing body of evidence denotes the role of inflammation in CRC. Several experimental models are being employed to investigate CRC in animals, which include the APCmin/+ mouse model, Azoxymethane, Dimethyl hydrazine, and a combination of Dextran sodium sulphate and dimethyl hydrazine. During CRC progression, several signal transduction pathways are activated. Among the major signal transduction pathways are p53, Transforming growth factor beta, Wnt/β-catenin, Delta Notch, Hippo signalling, nuclear factor erythroid 2-related factor 2 and Kelch-like ECH-associated protein 1 pathways. These signalling pathways collaborate with cell death mechanisms, which include apoptosis, necroptosis and autophagy, to determine cell fate. Extensive research has been carried out in our laboratory to investigate these signal transduction and cell death mechanistic pathways in CRC. This review summarizes CRC pathogenesis and the related cell death and signal transduction pathways.
Collapse
Affiliation(s)
- Ashok kumar Pandurangan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Thomas Divya
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Kalaivani Kumar
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Vadivel Dineshbabu
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Bakthavatchalam Velavan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Ganapasam Sudhandiran
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| |
Collapse
|