1
|
Legaki E, Koutouratsas T, Theocharopoulos C, Lagkada V, Gazouli M. Polymorphisms in CLEC5A and CLEC7A genes modify risk for inflammatory bowel disease. Ann Gastroenterol 2024; 37:64-70. [PMID: 38223252 PMCID: PMC10785015 DOI: 10.20524/aog.2024.0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) seems to arise from an interplay between genetic and environmental factors. CLEC5A and CLEC7A genes code for 2 members of the C-type lectin receptor superfamily, which participate in the immune response against various pathogens, mediating inflammatory signaling. CLEC5A polymorphisms have been linked to the risk of Crohn's disease (CD), whereas CLEC7A has been implicated in fungal dysbiosis, chemically induced colitis in mice and undertreated ulcerative colitis (UC) in humans. This study aimed to explore how specific CLEC5A and CLEC7A polymorphisms contribute to the development of CD and UC. Methods One hundred twelve CD patients, 94 UC patients and 164 sex- and age- matched healthy individuals were genotyped for the single nucleotide polymorphisms rs2078178 and rs16910631 of the CLEC7A gene, and rs1285933 of the CLEC5A gene. Results The CLEC7A rs2078178 AA genotype was more frequent in UC patients compared to healthy individuals, The CLEC7A rs16910631 CT genotype was significantly associated with UC risk compared to healthy individuals, while there was no statistical correlation with CD. The CLEC5A rs1285933 GA genotype was found to be protective against UC and CD, and the AA genotype against CD. Carriers of the rs1285933 A allele appeared to have reduced susceptibility to CD, implying that the presence of the A allele could be protective against CD development. Conclusions This is the first study to correlate the CLEC5A rs1285933 polymorphism with the risk for UC. The rs2078178 AA genotype and the CLEC7A rs16910631 CT could be promising biomarkers for UC susceptibility.
Collapse
Affiliation(s)
- Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Tilemachos Koutouratsas
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Charalampos Theocharopoulos
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Vivian Lagkada
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| |
Collapse
|
2
|
DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr Diabetes 2022; 12:50. [PMID: 36535927 PMCID: PMC9763387 DOI: 10.1038/s41387-022-00228-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity is accompanied by excess adipose fat storage, which may lead to adipose dysfunction, insulin resistance, and type 2 diabetes (T2D). Currently, the tendency to develop T2D in obesity cannot be explained by genetic variation alone-epigenetic mechanisms, such as DNA methylation, might be involved. Here, we aimed to identify changes in DNA methylation and gene expression in visceral adipose tissue (VAT) that might underlie T2D susceptibility in patients with obesity. METHODS We investigated DNA methylation and gene expression in VAT biopsies from 19 women with obesity, without (OND = 9) or with T2D (OD = 10). Differences in genome-scale methylation (differentially methylated CpGs [DMCs], false discovery rate < 0.05; and differentially methylated regions [DMRs], p value < 0.05) and gene expression (DEGs, p value <0.05) between groups were assessed. We searched for overlap between altered methylation and expression and the impact of altered DNA methylation on gene expression, using bootstrap Pearson correlation. The relationship of altered DNA methylation to T2D-related traits was also tested. RESULTS We identified 11 120 DMCs and 96 DMRs distributed across all chromosomes, with the greatest density of epigenomic alterations at the MHC locus. These alterations were found in newly and previously T2D-related genes. Several of these findings were supported by validation and extended multi-ethnic analyses. Of 252 DEGs in the OD group, 68 genes contained DMCs (n = 88), of which 24 demonstrated a significant relationship between gene expression and methylation (p values <0.05). Of these, 16, including ATP11A, LPL and EHD2 also showed a significant correlation with fasting glucose and HbA1c levels. CONCLUSIONS Our results revealed novel candidate genes related to T2D pathogenesis in obesity. These genes show perturbations in DNA methylation and expression profiles in patients with obesity and diabetes. Methylation profiles were able to discriminate OND from OD individuals; DNA methylation is thus a potential biomarker.
Collapse
|
3
|
Reiner J, Koch K, Woitalla J, Huth A, Bannert K, Sautter L, Jaster R, Witte M, Lamprecht G, Schäffler H. Body impedance analysis to estimate malnutrition in inflammatory bowel disease patients - A cross-sectional study. J Dig Dis 2022; 23:687-694. [PMID: 36710370 DOI: 10.1111/1751-2980.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Malnutrition is a common clinical problem in patients with inflammatory bowel diseases (IBD). However, a gold standard for the detection of malnutrition in IBD patients is lacking. METHODS A cross-sectional study to assess malnutrition in patients with IBD and healthy controls (HCs). Clinical characteristics (Montreal classification, disease activity, previous surgery) and mutations in the NOD2 gene in patients with Crohn's disease (CD) were obtained. We performed a nutritional assessment with screening for nutritional risk and diagnosis for malnutrition (Malnutrition Universal Screening Tool [MUST]) score, NRS-2002, European Society for Clinical Nutrition and Metabolism (ESPEN), and Global Leadership Initiative on Malnutrition (GLIM) criteria and performed body impedance analysis (BIA). RESULTS 101 IBD patients (57 CD and 44 ulcerative colitis (UC) and 50 HC were included in a single northern German tertiary center. GLIM criteria detected malnutrition significantly more often compared to the ESPEN criteria. Active disease, a long-standing disease course, and previous surgery were associated with reduced muscle mass. IBD patients had a higher fat mass index compared to HC. Mutations in the NOD2 gene had no effect on nutritional status. CONCLUSIONS The GLIM criteria detect malnutrition at a higher rate compared to ESPEN. Specific disease factors might put IBD patients at a higher risk for the development of malnutrition, so these patients might benefit from a frequently performed screening, which might result in a favorable disease course.
Collapse
Affiliation(s)
- Johannes Reiner
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Kristina Koch
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Julia Woitalla
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Astrid Huth
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Karen Bannert
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Lea Sautter
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Maria Witte
- Department of General, Visceral, Thoracic, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Holger Schäffler
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
- Department of Gastroenterology and Internal Medicine, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| |
Collapse
|
4
|
Harris TL, Silva MJ. Gene expression of intracortical bone demonstrates loading-induced increases in Wnt1 and Ngf and inhibition of bone remodeling processes. Bone 2021; 150:116019. [PMID: 34023542 PMCID: PMC8408835 DOI: 10.1016/j.bone.2021.116019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Osteocytes are the primary mechanosensitive cells in bone. However, their location in mineralized matrix has limited the in vivo study of osteocytic genes induced by mechanical loading. Laser Capture Microdissection (LCM) allows isolation of intracortical bone (Intra-CB), enriched for osteocytes, from bone tissue for gene expression analysis. We used microarray to analyze gene expression from mouse tibial Intra-CB dissected using LCM 4 h after a single loading bout or after 5 days of loading. Osteocyte enrichment was supported by greater expression of Sost, Dmp1, Dkk1, and Mepe in Intra-CB regions vs. Mixed regions containing periosteum and muscle (fold-change (FC) = 3.4, 2.2, 5.1, 3.0, respectively). Over 150 differentially expressed genes (DEGs) due to loading (loaded vs. contralateral control) in Intra-CB were found on Day 1 and Day 5, but only 10 genes were differentially expressed on both days, including Ngf (Day 1 FC = 13.5, Day 5 FC = 11.1) and Wnt1 (Day 1 FC = 1.5, Day 5 FC = 5.1). The expression of Ngf and Wnt1 within Intra-CB was confirmed by in situ hybridization, and a significant increase in number of Wnt1 mRNA molecules occurred on day 1. We also found changes in extracellular matrix remodeling with Timp1 (FC = 3.1) increased on day 1 and MMP13 (FC = 0.3) decreased on day 5. Supporting this result, IHC for osteocytic MMP13 demonstrated a marginal decrease due to loading on day 5. Gene Ontology (GO) biological processes for loading DEGs indicated regulation of vasculature, neuronal and immune processes while cell-type specific gene lists suggested regulation of osteoclast, osteoblast, and endothelial related genes. In summary, microarray analysis of microdissected Intra-CB revealed differential regulation of Ngf, Wnt1, and MMP13 due to loading in osteocytes.
Collapse
Affiliation(s)
- Taylor L Harris
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States.
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
5
|
Li Y, Jin R, Li L, Choi JS, Kim J, Yoon HJ, Park JH, Yoon KC. Blue Light Induces Impaired Autophagy through Nucleotide-Binding Oligomerization Domain 2 Activation on the Mouse Ocular Surface. Int J Mol Sci 2021; 22:2015. [PMID: 33670592 PMCID: PMC7922400 DOI: 10.3390/ijms22042015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the effects of blue light exposure on nucleotide-binding oligomerization domain 2 (NOD2) expression on the mouse ocular surface and evaluated the role of NOD2 activation in light-induced cell death. Mice were divided into wild-type (WT), NOD2-knock out (KO), WT + blue light (WT + BL), and NOD2-KO + blue light (NOD2-KO + BL) groups, and the mice in the WT+BL and NOD2-KO + BL groups were exposed to blue light for 10 days. After 10 days of blue light exposure, increased reactive oxygen species and malondialdehyde were observed in the WT + BL and NOD2-KO + BL groups, and the WT + BL group showed a higher expression of NOD2 and autophagy related 16 like 1. Although both WT+BL and NOD2-KO + BL groups showed an increase in the expression of light chain 3-II, NOD2-KO + BL mice had a significantly lower p62 expression than WT + BL mice. In addition, NOD2-KO+BL mice had significantly lower corneal epithelial damage and apoptosis than WT + BL mice. In conclusion, blue light exposure can induce impaired autophagy by activation of NOD2 on the ocular surface. In addition, the reactive oxygen species (ROS)-NOD2-autophagy related 16 like 1 (ATG16L) signaling pathway may be involved in the blue-light-induced autophagy responses, resulting in corneal epithelial apoptosis.
Collapse
Affiliation(s)
- Ying Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (Y.L.); (R.J.); (L.L.); (J.S.C.); (J.K.); (H.J.Y.)
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (Y.L.); (R.J.); (L.L.); (J.S.C.); (J.K.); (H.J.Y.)
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (Y.L.); (R.J.); (L.L.); (J.S.C.); (J.K.); (H.J.Y.)
- Department of Biomedical Sciences and Centers for Creative Biomedical Scientists, Chonnam National University, Gwangju 61469, Korea
| | - Ji Suk Choi
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (Y.L.); (R.J.); (L.L.); (J.S.C.); (J.K.); (H.J.Y.)
| | - Jonghwa Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (Y.L.); (R.J.); (L.L.); (J.S.C.); (J.K.); (H.J.Y.)
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (Y.L.); (R.J.); (L.L.); (J.S.C.); (J.K.); (H.J.Y.)
| | - Jong Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 77, Korea;
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (Y.L.); (R.J.); (L.L.); (J.S.C.); (J.K.); (H.J.Y.)
- Department of Biomedical Sciences and Centers for Creative Biomedical Scientists, Chonnam National University, Gwangju 61469, Korea
| |
Collapse
|
6
|
Elleisy N, Rohde S, Huth A, Gittel N, Glass Ä, Möller S, Lamprecht G, Schäffler H, Jaster R. Genetic association analysis of CLEC5A and CLEC7A gene single-nucleotide polymorphisms and Crohn’s disease. World J Gastroenterol 2020; 26:2194-2202. [PMID: 32476786 PMCID: PMC7235209 DOI: 10.3748/wjg.v26.i18.2194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Crohn’s disease (CD) is characterized by a multifactorial etiology and a significant impact of genetic traits. While NOD2 mutations represent well established risk factors of CD, the role of other genes is incompletely understood.
AIM To challenge the hypothesis that single nucleotide polymorphisms (SNPs) in the genes CLEC5A and CLEC7A, two members of the C-type lectin domain family of pattern recognition receptors, may be associated with CD.
METHODS SNPs in CLEC5A, CLEC7A and the known CD risk gene NOD2 were studied using real time PCR-based SNP assays. Therefore, DNA samples from 175 patients and 157 healthy donors were employed. Genotyping data were correlated with clinical characteristics of the patients and the results of gene expression data analyses.
RESULTS In accordance with previous studies, rs2066844 and rs2066847 in NOD2 were found to be significantly associated with CD (allelic P values = 0.0368 and 0.0474, respectively). Intriguingly, for genotype AA of rs1285933 in CLEC5A, a potential association with CD (recessive P = 0.0523; odds ratio = 1.90) was observed. There were no associations between CD and SNPs rs2078178 and rs16910631 in CLEC7A. Variants of rs1285933 had no impact on CLEC5A gene expression. In contrast, genotype-dependent differences of CXCL5 expression in peripheral blood mononuclear cells were observed. There is no statistical interaction between the tested SNPs of NOD2 and CLEC5A, suggesting of a novel pathway contributing to the disease.
CONCLUSION Our data encourage enlarged follow-up studies to further address an association of SNP rs1285933 in CLEC5A with CD. The C-type lectin domain family member also deserves attention regarding a potential role in the pathophysiology of CD.
Collapse
Affiliation(s)
- Nagi Elleisy
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Astrid Huth
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Nicole Gittel
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock 18057, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock 18057, Germany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Holger Schäffler
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| |
Collapse
|
7
|
CLEC5A promotes the proliferation of gastric cancer cells by activating the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2020; 524:656-662. [PMID: 32033754 DOI: 10.1016/j.bbrc.2019.10.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC), as one of the most prevalent malignancies, contributes to the high morbidity and mortality worldwide. By analyzing the bioinformatics, qRT-PCR and IHC assays, we found that CLEC5A is overexpressed in GC and associated with poorer prognosis. CLEC5A silencing inhibits cell growth and DNA replication and induces cell cycle arrest and cell apoptosis. Bioinformatics analyses and Western blotting revealed that CLEC5A depletion led to the dysregulation of the PI3K/AKT/mTOR pathway. CLEC5A-mediated GC proliferation and anti-apoptosis were impaired by blocking the PI3K/AKT/mTOR pathway with LY294002. We hypothesize that CLEC5A is of vital importance to GC initiation and progression via the PI3K/AKT/mTOR pathway, and that our results might represent promising therapeutic strategies for GC patients.
Collapse
|
8
|
Li Y, Jin R, Li L, Yoon HJ, Choi JH, Park JH, Liu Z, Li W, Li Z, Yoon KC. Expression and Role of Nucleotide-Binding Oligomerization Domain 2 (NOD2) in the Ocular Surface of Murine Dry Eye. Invest Ophthalmol Vis Sci 2019; 60:2641-2649. [PMID: 31237655 DOI: 10.1167/iovs.19-27144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate expression and role of nucleotide-binding oligomerization domain 2 (NOD2) in the ocular surface of experimental dry eye (EDE), which is a nod-like receptor member and is involved in innate immune response. Methods C57/BL6 female mice were divided into the groups: untreated (UT), EDE, and NOD2 knockout (KO) mice exposed to desiccating stress for 14 days. Clinical parameters and levels of inflammatory cytokine were measured at 3,5,7, and 14 days. Immunofluorescent staining for NOD2 and Western blot for RIP2 and NF-κB were performed at 14 days. Flow cytometry, PAS staining and TUNEL staining were performed. Results After EDE induction, NOD2 was expressed in the corneal epithelium of the EDE group. The EDE group showed a significantly increased RIP2 expression compared to the UT and NOD2-KO groups. A significantly lower expression of NF-κB and lower levels of IL-1β, IL-6, IFN-γ, and TNF-α were noted in the NOD2-KO group than in the EDE group. The NOD2-KO group had lower CD11b+ and CD4+CCR5+ T cells, TUNEL-positive cells and corneal staining score and higher density of conjunctival goblet cell density, tear volume, and tear film break-up time than the EDE group. The UT group showed significant differences in inflammatory and clinical parameters compared to the EDE and NOD2-KO groups. Conclusions The NOD2 receptor pathway induced inflammation and apoptosis by activation of RIP2 and NF-κB on the ocular surface of EDE, thereby reducing tear secretion. Therefore, NOD2 pathway may be involved in the pathogenesis of dry eye.
Collapse
Affiliation(s)
- Ying Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Joo-Hee Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Hwan Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Xiamen, China
| | - Wei Li
- Xiamen University affiliated Xiamen Eye Center, Xiamen, China
| | - Zhengri Li
- Department of Ophthalmology, Affiliated Hospital of Yanbian University, China
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| |
Collapse
|
9
|
CLEC5A expressed on myeloid cells as a M2 biomarker relates to immunosuppression and decreased survival in patients with glioma. Cancer Gene Ther 2019; 27:669-679. [PMID: 31591460 DOI: 10.1038/s41417-019-0140-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 11/08/2022]
Abstract
Glioma is the most common tumor in the central nervous system that portends a poor prognosis. Key genes negatively related to survival may provide targets for therapy to improve the outcome of glioma. Here, we report a protein-coding gene CLEC5A, which is the top 1 gene by univariate Cox regression analysis of 524 primary GBM samples. Expression of CLEC5A is significantly correlated with decreased overall survival in patients with glioma via large-scale analysis. An analysis of 2589 patient samples showed that CLEC5A expression is higher in (1) glioblastoma than in lower-grade glioma and nontumor tissue, (2) in the mesenchymal subtype than in other subtypes, and (3) in IDH1-wild type glioblastoma than in IDH1-mutated glioblastoma. Notably, this tumor-associated biomarker is expressed preferentially on myeloid cells over glioma cells. And it shows a strong co-expression with M2 macrophage biomarker. Furthermore, CLEC5A-associated genes are enriched in immunosuppressive biological processes. The silico flow cytometry also showed CLEC5A expression related to less tumor purity and more tumor-promoting leukocytes infiltration. In conclusion, we proposed a new M2 biomarker expressed on myeloid cells that may decrease survival in patients with glioma through immunosuppressive mechanisms.
Collapse
|
10
|
Sakibuzzaman M, Moosa SA, Akhter M, Trisha IH, Talib KA. Identifying the Neurogenetic Framework of Crohn's Disease Through Investigative Analysis of the Nucleotide-binding Oligomerization Domain-containing Protein 2 Gene Mutation. Cureus 2019; 11:e5680. [PMID: 31723489 PMCID: PMC6825438 DOI: 10.7759/cureus.5680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Among several inflammatory bowel diseases, Crohn's disease is associated with inflammation that may take place in any region of the gastrointestinal tract. The inflammatory process is most commonly associated with the ileum, often spreading deep into the bowel tissues, extending into multiple forms, such as strictures and penetrations. Currently, Crohn's disease has no known cure. Various medical and surgical procedures are used to manage the condition. The underlying mechanisms of the disease are yet to be identified, with recent studies suggesting the influence of genetics, environmental factors, and the possible activity of pathogens. Newer studies also offer strong evidence that suggests a relationship between Crohn's disease and the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene, also known as inflammatory bowel disease protein 1 (IBD1) or caspase recruitment domain-containing protein 15 (CARD15). NOD2 is responsible for the mechanism in which the immune system identifies foreign microorganisms through the sensing of pathogen-associated molecular patterns in microorganisms. NOD2 can detect intracellular muramyl dipeptide (MDP) in the bacterial wall, thereby causing an inflammatory response. Three major mutations associated with the NOD2 gene are known to have an influence on Crohn's disease (SNP8, SNP12, and SNP13). This article will discuss a number of studies to identify whether there is a relationship between Crohn's disease and the NOD2 gene.
Collapse
Affiliation(s)
- Md Sakibuzzaman
- Internal Medicine, Sir Salimullah Medical College, Dhaka, BGD
| | - Syed Ahmad Moosa
- Family Medicine, Woodhaven Medical Professional Corporation, Queens Village, USA
| | | | | | - Khandokar A Talib
- Medicine, Sylhet Mag Osmani Medical College and Hospital, Sylhet, BGD
| |
Collapse
|
11
|
Schäffler H, Geiss D, Gittel N, Rohde S, Huth A, Glass Ä, Brandhorst G, Jaster R, Lamprecht G. Mutations in the NOD2 gene are associated with a specific phenotype and lower anti-tumor necrosis factor trough levels in Crohn's disease. J Dig Dis 2018; 19:678-684. [PMID: 30284387 DOI: 10.1111/1751-2980.12677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene mutations are known to be an important risk factor in the pathogenesis of Crohn's disease (CD). Specific disease phenotypes are associated with the presence of NOD2 gene mutation. One treatment option is to use an anti-tumor necrosis factor (TNF)-α agent. Therapeutic drug monitoring (TDM) is usually performed in cases of a loss of response. Our aim was to explore whether NOD2 gene mutations have an effect on the disease phenotype, vitamin D levels, and on TDM in CD patients. METHODS This was a retrospective genotype-phenotype association study on NOD2 gene mutations in 161 patients with CD. RESULTS Altogether 55 (34.2%) patients carried at least one mutant allele of NOD2. NOD2 gene mutations were associated with ileocecal disease, ileocecal resection, stricturing and perianal disease, and patients with NOD2 gene mutation had significantly less frequent colonic disease and received an ostomy less frequently. TDM in patients with NOD2 gene mutation showed more frequent anti-TNF trough levels in the subtherapeutic range and lower anti-TNF trough levels than in NOD2 wild-type (WT) patients. CONCLUSIONS CD patients with NOD2 gene mutation have a specific clinical phenotype and they may require higher doses of anti-TNF agents to achieve sufficient anti-TNF trough levels. They may therefore benefit from a proactive TDM than a reactive approach. This could be another step in the direction of personalized medicine.
Collapse
Affiliation(s)
- Holger Schäffler
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - David Geiss
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Nicole Gittel
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Astrid Huth
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Gunnar Brandhorst
- Institute for Clinical Chemistry, UMG-Laboratories, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|