1
|
König J, Rokavec M, Öner-Ziegler MG, Fei Y, Hermeking H. Myeloid Mir34a suppresses colitis-associated colon cancer: characterization of mediators by single-cell RNA sequencing. Cell Death Differ 2024:10.1038/s41418-024-01380-9. [PMID: 39425000 DOI: 10.1038/s41418-024-01380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024] Open
Abstract
We have previously shown that general deletion of the gene encoding the p53-inducible Mir34a microRNA enhances the number and invasion of colitis-associated colorectal cancers (CACs) in mice. Since the p53-pathway has been implicated in tumor-suppression mediated by cells in the tumor microenvironment (TME) we deleted Mir34a in myeloid cells and characterized CACs in these with scRNA-Seq (single cell RNA sequencing). This revealed an increase in specific macrophage subtypes, such as Cdk8+ macrophages and Mrc1+, M2-like macrophages. The latter displayed elevated expression of 21 known Mir34a target mRNAs, including Csf1r, Axl, Foxp1, Ccr1, Nampt, and Tgfbr2, and 32 predicted Mir34a target mRNAs. Furthermore, Mir34a-deficient BMDMs showed enhanced migration, elevated expression of Csf1r and a shift towards M2-like polarization when compared to Mir34a-proficient BMDMs. Concomitant deletion of Csf1r or treatment with a Csf1r inhibitor reduced the CAC burden and invasion in these mice. Notably, loss of myeloid Mir34a function resulted in a prominent, inflammatory CAC cell subtype, which displayed epithelial and macrophage markers. These cells displayed high levels of the EMT transcription factor Zeb2 and may therefore enhance the invasiveness of CACs. Taken together, our results provide in vivo evidence for a tumor suppressive role of myeloid Mir34a in CACs which is, at least in part, mediated by maintaining macrophages in an M1-like state via repression of Mir34a targets, such as Csf1r. Collectively, these findings may serve to identify new therapeutic targets and approaches for treatment of CAC.
Collapse
Affiliation(s)
- Janine König
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, D-80337, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, D-80337, Munich, Germany
| | - Meryem Gülfem Öner-Ziegler
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, D-80337, Munich, Germany
| | - Ye Fei
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, D-80337, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, D-80337, Munich, Germany.
- German Cancer Consortium (DKTK), Partner site Munich, D-80336, Munich, Germany.
- German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Dwayne L Thomas Ii, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Semaphorin 3D promotes pancreatic ductal adenocarcinoma progression and metastasis through macrophage reprogramming. SCIENCE ADVANCES 2024; 10:eadp0684. [PMID: 39413197 DOI: 10.1126/sciadv.adp0684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Axon guidance molecules are frequently altered in pancreatic ductal adenocarcinoma (PDA) and influence PDA progression. However, the molecular mechanism remained unclear. Using genetically engineered mouse models to examine semaphorin 3D (SEMA3D), we identified a dual role for tumor- and nerve-derived SEMA3D in the malignant transformation of pancreatic epithelial cells and invasive PDA development. Pancreatic-specific knockout of the SEMA3D gene from the KRASG12D and TP53R172H mutation knock-in, PDX1-Cre(KPC) mouse model demonstrated delayed tumor initiation, prolonged survival, absence of metastasis, and reduced M2 macrophage expression. Mechanistically, tumor- and nerve-derived SEMA3D indirectly reprograms macrophages through KRASMUT-dependent ARF6 signaling in PDA cells, resulting in increased lactate production, which is sensed by GPCR132 on macrophages to stimulate protumorigenic M2 polarization. Multiplex immunohistochemistry demonstrated increased M2-polarized macrophages proximal to nerves in SEMA3D-expressing human PDA tissue. This study suggests that altered SEMA3D expression leads to an acquisition of cancer-promoting functions, and nerve-derived SEMA3D is "hijacked" by PDA cells to support growth and metastasis in a KRASMUT-dependent manner.
Collapse
Affiliation(s)
- Noelle R J Thielman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vanessa Funes
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjana Davuluri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21287, USA
| | - Hector E Ibanez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wei-Chih Sun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keyu Li
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Stephen Muth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xingyi Pan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenji Fujiwara
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Kimura Hospital and Department of Surgery; Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dwayne L Thomas Ii
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - MacKenzie Henderson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Selina Shiqing Teh
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Thompson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alex Kolodkin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fengxi Meng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shanghai Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Lyu Y, Xie F, Chen B, Shin WS, Chen W, He Y, Leung KT, Tse GMK, Yu J, To KF, Kang W. The nerve cells in gastrointestinal cancers: from molecular mechanisms to clinical intervention. Oncogene 2024; 43:77-91. [PMID: 38081962 PMCID: PMC10774121 DOI: 10.1038/s41388-023-02909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Gastrointestinal (GI) cancer is a formidable malignancy with significant morbidity and mortality rates. Recent studies have shed light on the complex interplay between the nervous system and the GI system, influencing various aspects of GI tumorigenesis, such as the malignance of cancer cells, the conformation of tumor microenvironment (TME), and the resistance to chemotherapies. The discussion in this review first focused on exploring the intricate details of the biological function of the nervous system in the development of the GI tract and the progression of tumors within it. Meanwhile, the cancer cell-originated feedback regulation on the nervous system is revealed to play a crucial role in the growth and development of nerve cells within tumor tissues. This interaction is vital for understanding the complex relationship between the nervous system and GI oncogenesis. Additionally, the study identified various components within the TME that possess a significant influence on the occurrence and progression of GI cancer, including microbiota, immune cells, and fibroblasts. Moreover, we highlighted the transformation relationship between non-neuronal cells and neuronal cells during GI cancer progression, inspiring the development of strategies for nervous system-guided anti-tumor drugs. By further elucidating the deep mechanism of various neuroregulatory signals and neuronal intervention, we underlined the potential of these targeted drugs translating into effective therapies for GI cancer treatment. In summary, this review provides an overview of the mechanisms of neuromodulation and explores potential therapeutic opportunities, providing insights into the understanding and management of GI cancers.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Wing Sum Shin
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
4
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Thomas D, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Tumor- and Nerve-Derived Axon Guidance Molecule Promotes Pancreatic Ductal Adenocarcinoma Progression and Metastasis through Macrophage Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563862. [PMID: 37961340 PMCID: PMC10634802 DOI: 10.1101/2023.10.24.563862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Axon guidance molecules were found to be the gene family most frequently altered in pancreatic ductal adenocarcinoma (PDA) through mutations and copy number changes. However, the exact molecular mechanism regarding PDA development remained unclear. Using genetically engineered mouse models to examine one of the axon guidance molecules, semaphorin 3D (SEMA3D), we found a dual role for tumor-derived SEMA3D in malignant transformation of pancreatic epithelial cells and a role for nerve-derived SEMA3D in PDA development. This was demonstrated by the pancreatic-specific knockout of the SEMA3D gene from the KRAS G12D and TP53 R 172 H mutation knock-in, PDX1-Cre (KPC) mouse model which demonstrated a delayed tumor initiation and growth comparing to the original KPC mouse model. Our results showed that SEMA3D knockout skews the macrophages in the pancreas away from M2 polarization, providing a potential mechanistic role of tumor-derived SEMA3D in PDA development. The KPC mice with the SEMA3D knockout remained metastasis-free, however, died from primary tumor growth. We then tested the hypothesis that a potential compensation mechanism could result from SEMA3D which is naturally expressed by the intratumoral nerves. Our study further revealed that nerve-derived SEMA3D does not reprogram macrophages directly, but reprograms macrophages indirectly through ARF6 signaling and lactate production in PDA tumor cells. SEMA3D increases tumor-secreted lactate which is sensed by GPCR132 on macrophages and subsequently stimulates pro-tumorigenic M2 polarization in vivo. Tumor intrinsic- and extrinsic-SEMA3D induced ARF6 signaling through its receptor Plexin D1 in a mutant KRAS-dependent manner. Consistently, RNA sequencing database analysis revealed an association of higher KRAS MUT expression with an increase in SEMA3D and ARF6 expression in human PDAs. Moreover, multiplex immunohistochemistry analysis showed an increased number of M2-polarized macrophages proximal to nerves in human PDA tissue expressing SEMA3D. Thus, this study suggests altered expression of SEMA3D in tumor cells lead to acquisition of cancer-promoting functions and the axon guidance signaling originating from nerves is "hijacked" by tumor cells to support their growth. Other axon guidance and neuronal development molecules may play a similar dual role which is worth further investigation. One sentence summary Tumor- and nerve-derived SEMA3D promotes tumor progression and metastasis through macrophage reprogramming in the tumor microenvironment. STATEMENT OF SIGNIFICANCE This study established the dual role of axon guidance molecule, SEMA3D, in the malignant transformation of pancreatic epithelial cells and of nerve-derived SEMA3D in PDA progression and metastasis. It revealed macrophage reprogramming as the mechanism underlying bothroles. Together, this research elucidated how inflammatory responses promote invasive PDA progression and metastasis through an oncogenic process.
Collapse
|
5
|
Zhao Z, Zheng B, Zheng J, Zhang Y, Jiang C, Nie C, Jiang X, Yao D, Zhao H. Integrative Analysis of Inflammatory Response-Related Gene for Predicting Prognosis and Immunotherapy in Glioma. J Mol Neurosci 2023; 73:608-627. [PMID: 37488455 PMCID: PMC10516783 DOI: 10.1007/s12031-023-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Inflammatory response plays a crucial role in the development and progression of gliomas. Whereas the prognostic esteem of inflammatory response-related genes has never been comprehensively explored in glioma, the RNA-seq information and clinical data of patients with glioma were extracted from TCGA, CGGA, and Rembrandt databases. The differentially expressed genes (DEGs) were picked out between glioma tissue and non-tumor brain tissue (NBT). Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to construct the prognostic signature in the TCGA cohort and verified in other cohorts. Kaplan-Meier survival analyses were conducted to compare the overall survival (OS) between the high and low-risk groups. Univariate and multivariate Cox analyses were subsequently used to confirm the independent prognostic factors of OS, and then, the nomogram was established based them. Furthermore, immune infiltration, immune checkpoints, and immunotherapy were also probed and compared between high and low-risk groups. The four genes were also analyzed by qRT-PCR, immunohistochemistry, and western blot trials between glioma tissue and NBT. The 39 DEGs were identified between glioma tissue and NBT, of which 31 genes are associated to the prognosis of glioma. The 8 optimal inflammatory response-related genes were selected to construct the prognostic inflammatory response-related signature (IRRS) through the LASSO regression. The effectiveness of the IRRS was verified in the TCGA, CGGA, and Rembrandt cohorts. Meanwhile, a nomogram with better accuracy was established to predict OS based on the independent prognostic factors. The IRRS was highly correlated with clinicopathological features, immune infiltration, and genomic alterations in glioma patients. In addition, four selective genes also verified the difference between glioma tissue and NBT. A novel prognostic signature was associated with the prognosis, immune infiltration, and immunotherapy effect in patients with gliomas. Thus, this study could provide a perspective for glioma prognosis and treatment.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Zhang
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongxiao Yao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Zeng S, Zhang Z, Ye C, Wang J, Jing C, Li L. Mediating immunosuppressive functions: a new perspective on the complex immunological properties of SEMA4D in the tumor microenvironment. Front Oncol 2023; 13:1171926. [PMID: 37287907 PMCID: PMC10242174 DOI: 10.3389/fonc.2023.1171926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Semaphorin 4D (SEMA4D) is considered a new antitumor target closely related to immune cells. However, understanding the role of SEMA4D in the tumor microenvironment (TME) is limited. In this study, we explored the expression and immune cell infiltration patterns of SEMA4D using multiple bioinformatics datasets and analyzed the relationship between SEMA4D expression with immune checkpoints, tumor mutational load (TMB), microsatellite instability (MSI) and immune function. We detected that SEMA4D is overexpressed in many tumors types, widely enriched in immune cells, and closely associated with TILs, MSI, TMB, as well as T-cell exhaustion-associated immune checkpoints, and thus can broadly affect the immune microenvironment. We further verified the overexpression of SEMA4D in tumor and its distribution in TME by immunohistochemistry, RT-qPCR and flow cytometry, and confirmed that decreased expression of SEMA4D can lead to recovery of T cell exhaustion. In conlusion, this study provides a more comprehensive perspective of SEMA4D regulation of tumor immunity, which provide a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Shujie Zeng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zihao Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
7
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
8
|
Li YT, Yuan WZ, Jin WL. Vagus innervation in the gastrointestinal tumor: Current understanding and challenges. Biochim Biophys Acta Rev Cancer 2023; 1878:188884. [PMID: 36990250 DOI: 10.1016/j.bbcan.2023.188884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
The vagus nerve (VN) is the main parasympathetic nerve of the autonomic nervous system. It is widely distributed in the gastrointestinal tract and maintains gastrointestinal homeostasis with the sympathetic nerve under physiological conditions. The VN communicates with various components of the tumor microenvironment to positively and dynamically affect the progression of gastrointestinal tumors (GITs). The intervention in vagus innervation delays GIT progression. Developments in adeno-associated virus vectors, nanotechnology, and in vivo neurobiological techniques have enabled the creation of precisely regulated "tumor neurotherapies". Furthermore, the combination of neurobiological techniques and single cell sequencing may reveal more insights into VN and GIT. The present review aimed to summarize the mechanisms of communication between the VN and the gastrointestinal TME and to explore the potential and challenges of VN-based tumor neurotherapy in GITs.
Collapse
|
9
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Soluble Sema4D Level Is Positively Correlated with Sema4D Expression in PBMCs and Peripheral Blast Number in Acute Leukemia. DISEASE MARKERS 2022; 2022:1384471. [PMID: 35401878 PMCID: PMC8988092 DOI: 10.1155/2022/1384471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Semaphorin 4D (Sema4D) is highly expressed in various cancers and leukemia. It is involved in the development of acute leukemia. A high level of soluble Sema4D is also present in the plasma of acute leukemia patients. However, it remains unknown whether Sema4D is associated with the clinical characteristics of acute leukemia. In this study, Sema4D expression was examined in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMCs) of patients with acute leukemia, and it was highly expressed in the PBMCs of B-acute lymphoblastic leukemia (ALL), T-ALL, and acute myeloid leukemia (AML) patients and in the BMMCs of B-ALL and AML patients but not in the BMMCs of T-ALL patients. Sema4D expression was higher in the PBMCs of T-ALL patients than in the PBMCs of B-ALL or AML patients. In addition, Sema4D expression in BMMCs was reduced in B-ALL patients during the chemotherapy process. It was lower in remission patients than in newly diagnosed and patients without remission. In acute leukemia, soluble Sema4D level in serum is positively correlated with Sema4D expression in PBMCs, leukocyte number, and peripheral blast number. Those results suggest that the levels of Sema4D and its soluble form are associated with acute leukemia development and may be regarded as a potential biomarker in pediatric acute leukemia.
Collapse
|
11
|
Jiang J, Zhang F, Wan Y, Fang K, Yan ZD, Ren XL, Zhang R. Semaphorins as Potential Immune Therapeutic Targets for Cancer. Front Oncol 2022; 12:793805. [PMID: 35155237 PMCID: PMC8830438 DOI: 10.3389/fonc.2022.793805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Semaphorins are a large class of secreted or membrane-bound molecules. It has been reported that semaphorins play important roles in regulating several hallmarks of cancer, including angiogenesis, metastasis, and immune evasion. Semaphorins and their receptors are widely expressed on tumor cells and immune cells. However, the biological role of semaphorins in tumor immune microenvironment is intricate. The dysregulation of semaphorins influences the recruitment and infiltration of immune cells, leading to abnormal anti-tumor effect. Although the underlying mechanisms of semaphorins on regulating tumor-infiltrating immune cell activation and functions are not fully understood, semaphorins can notably be promising immunotherapy targets for cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fang Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wan
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ke Fang
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ze-Dong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xin-Ling Ren
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
13
|
Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics 2021; 11:3262-3277. [PMID: 33537086 PMCID: PMC7847692 DOI: 10.7150/thno.54023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.
Collapse
|
14
|
Li C, Wan L, Wang P, Guan X, Li C, Wang X. Sema4D/Plexin-B1 promotes the progression of osteosarcoma cells by activating Pyk2-PI3K-AKT pathway. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:577-583. [PMID: 34854398 PMCID: PMC8672410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Osteosarcoma (OS) is one of the two most common malignant bone tumors among children and teens but it is still a rare disorder. Semaphorin 4D (Sema4D) has been reported to play a specific role in human cancers. The aim of this study was to explore the function of Sema4D in the tumorigenesis and development of OS. METHODS 10 pairs of OS tissues and paracancerous normal tissues from human OS samples and OS cell lines were used. Western blot assay was performed to detect the protein expression of Sema4D, Plexin-B1, and associated proteins of Pyk2-PI3K/AKT pathway. To explore the effect of Sema4D in the progression of OS, we reduced the expression of Sema4D. The effect of Sema4D knockdown on cell proliferation was explored by CCK-8 assay and clone formation assay. The effect of Sema4D knockdown on cell migration and invasion was assessed by Transwell assay. RESULTS Sema4D was overexpressed in OS tissues and cell lines. Sema4D knockdown notably suppressed cell proliferation in OS cells. Cell migration and invasion were reduced by Sema4D knockdown. Sema4D/Plexin-B1 facilitated OS, progression by promoting Pyk2-PI3K/AKT pathway. CONCLUSION Sema4D/Plexin-B1 promoted the development of OS so Sema4D might be a potential target of treatment for patients with OS.
Collapse
Affiliation(s)
- Changhui Li
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China,Department of Rehabilitation Medicine, People’s Hospital of Rizhao, Rizhao, China
| | - Lei Wan
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Peng Wang
- Department of Rehabilitation Medicine, People’s Hospital of Rizhao, Rizhao, China
| | - Xiliang Guan
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Congda Li
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Xishan Wang
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China,Corresponding author: Xishan Wang, Department of Orthopedics, People’s Hospital of Rizhao, No. 126 Taian Road, Rizhao, China E-mail:
| |
Collapse
|
15
|
Wang Z, Zhao Y, Xu H, Liang F, Zou Q, Wang C, Jiang J, Lin F. CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer. J Cell Mol Med 2020; 24:11445-11456. [PMID: 32910558 PMCID: PMC7576280 DOI: 10.1111/jcmm.15751] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The progression of lung cancer is majorly facilitated by TAMs (tumour-associated macrophages). However, how the TAMs infiltrate the NSCLC microenvironment and the associated biochemical are not fully elaborated. Research has revealed that changes in CtBP1 modulates innate immunity. Here, we investigated if CtBP1 facilitates infiltration of TAM and the subsequent progression of NSCLC. Immunohistochemical analysis was carried out in 96 NSCLC patients to estimate the clinicopathological importance of CtBP1 in the disease. CtBP1 overexpression and knockdown were carried out to assess the activity of CtBP1 in NSCLC cells. Elevated expression of CtBP1 correlated positively with TAMs infiltration into NSCLC tissues, induced EMT (epithelial-mesenchymal transition) in NSCLC cells and modulated the activated NF-κB signalling pathway leading to increase in CCL2 secretion from NSCLC cells, thus promoting TAM recruitment and polarization. TAM induction and polarization reduced significantly on exhausting p65 in NSCLC cells with CtBP1. Moreover, infiltration of TMAs was reduced remarkably on antagonist-mediated blocking of CCR2 and impeded the progression of NSCLC in a mouse model. These findings thus show a novel insight into the process of CtBP1-regulated TAM infiltration in NSCLC.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Yan Zhao
- Physical Examination CenterThe Second Hospital of Jilin UniversityChangchunChina
| | - Hongyan Xu
- Department of Medical OncologyThe Tumor Hospital of Jilin CityJilinChina
| | - Feihai Liang
- Department of Cardiovascular thoracic SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Qingxu Zou
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Chen Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jingyuan Jiang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Fengwu Lin
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
16
|
Zhang B, Miao T, Shen X, Bao L, Zhang C, Yan C, Wei W, Chen J, Xiao L, Sun C, Du J, Li Y. EB virus-induced ATR activation accelerates nasopharyngeal carcinoma growth via M2-type macrophages polarization. Cell Death Dis 2020; 11:742. [PMID: 32917854 PMCID: PMC7486933 DOI: 10.1038/s41419-020-02925-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
Chronic inflammation induced by persistent viruses infection plays an essential role in tumor progression, which influenced on the interaction between the tumor cells and the tumor microenvironment. Our earlier study showed that ATR, a key kinase participant in single-stranded DNA damage response (DDR), was obviously activated by Epstein-Barr virus (EBV) in nasopharyngeal carcinoma (NPC). However, how EBV-induced ATR activation promotes NPC by influencing inflammatory microenvironment, such as tumor-associated macrophages (TAMs), remains elusive. In this study, we showed that EBV could promote the expression of p-ATR and M2-type TAMs transformation in clinical NPC specimens. The expression of p-ATR and M2-type TAMs were closely correlated each other and involved in TNM stage, lymph node metastasis and poor prognosis of the patients. In addition, the expression levels of CD68+CD206+, Arg1, VEGF, and CCL22 were increased in EB+ CNE1 cells, and decreased when ATR was inhibited. In the nude mice, EBV-induced ATR activation promoted subcutaneous transplanted tumor growth, higher expression of Ki67 and lung metastasis via M2-type TAMs recruitment. Experimental data also showed that the polarization of M2, the declined tumor necrosis factor-α (TNF-α) and increased transforming growth factor-β (TGF-β) were associated with ATR. Meanwhile, ATR activation could promote PPAR-δ and inhibited c-Jun and p-JNK expression, then downregulate JNK pathway. Collectively, our current study demonstrated the EBV infection could activate the ATR pathway to accelerate the transition of TAMs to M2, suggesting ATR knockdown could be a potential effective treatment strategy for EBV-positive NPC.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Stomatology, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Tianyu Miao
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lirong Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Caixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liying Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chongkui Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jintao Du
- Otorhinolaryngology-Head and Neck Surgery of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Fard D, Tamagnone L. Semaphorins in health and disease. Cytokine Growth Factor Rev 2020; 57:55-63. [PMID: 32900601 DOI: 10.1016/j.cytogfr.2020.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022]
Abstract
Cell-cell communication is pivotal to guide embryo development, as well as to maintain adult tissues homeostasis and control immune response. Among extracellular factors responsible for this function, are the Semaphorins, a broad family of around 20 different molecular cues conserved in evolution and widely expressed in all tissues. The signaling cascades initiated by semaphorins depend on a family of conserved receptors, called Plexins, and on several additional molecules found in the receptor complexes. Moreover, multiple intracellular pathways have been described to act downstream of semaphorins, highlighting significant diversity in the signaling cascades controlled by this family. Notably, semaphorin expression is altered in many human diseases, such as immunopathologies, neurodegenerative diseases and cancer. This underscores the importance of semaphorins as regulatory factors in the tissue microenvironment and has prompted growing interest for assessing their potential relevance in medicine. This review article surveys the main contexts in which semaphorins have been found to regulate developing and healthy adult tissues, and the signaling cascades implicated in these functions. Vis a vis, we will highlight the main pathological processes in which semaphorins are thought to have a role thereof.
Collapse
Affiliation(s)
- Damon Fard
- University of Torino School of Medicine, Torino, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
18
|
Chen S, Liu Z, Li M, Huang Y, Wang M, Zeng W, Wei W, Zhang C, Gong Y, Guo L. Potential Prognostic Predictors and Molecular Targets for Skin Melanoma Screened by Weighted Gene Co-expression Network Analysis. Curr Gene Ther 2020; 20:5-14. [PMID: 32416689 DOI: 10.2174/1566523220666200516170832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
AIMS AND OBJECTIVES Among skin cancers, malignant skin melanoma is the leading cause of death. Identification of gene markers of malignant skin melanoma associated with survival may provide new clues for prognosis prediction and treatment. This research aimed to screen out potential prognostic predictors and molecular targets for malignant skin melanoma. INTRODUCTION Information regarding gene expression in skin melanoma and patients' clinical traits was obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was applied to build co-expression modules and investigate the association between the modules and clinical traits. Moreover, functional enrichment analysis was performed for clinically significant co-expression modules. Hub genes of these modules were validated via Gene Expression Profiling Interactive Analysis (GEPIA) and the Human Protein Atlas (http:// www.proteinatlas.org). METHODS First, using WGCNA, 9 co-expression modules were constructed by the top 25% differentially expressed genes (4406 genes) from 77 human melanoma samples. Two co-expression modules (magenta and blue modules) were significantly correlated with survival months (r = -0.27, p = 0.02; r = 0.27, p = 0.02, respectively). The results of functional enrichment analysis demonstrated that the magenta module was mainly enriched in the cell cycle process and the blue module was mainly enriched in the immune response process. Additionally, the GEPIA and Human Protein Atlas results suggested that the hub genes CCNB2, ARHGAP30, and SEMA4D were associated with relapse-free survival and overall survival (all p-values < 0.05) and were differentially expressed in melanoma tumors and normal skin. RESULTS AND CONCLUSION The results provided the framework of co-expression gene modules of skin melanoma and screened out CCNB2, ARHGAP30, and SEMA4D associated with survival as potential prognostic predictors and molecular targets of treatment.
Collapse
Affiliation(s)
- Sichao Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zeming Liu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Man Li
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yihui Huang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Pediatrics, St. John Hospital and Medical Center, Detroit, MI, United States
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Wang K, Zhao XH, Liu J, Zhang R, Li JP. Nervous system and gastric cancer. Biochim Biophys Acta Rev Cancer 2019; 1873:188313. [PMID: 31647986 DOI: 10.1016/j.bbcan.2019.188313] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The nervous system has been recently shown to exert impact on gastric cancer directly and indirectly. Gastric cancer cells invade nerve fibers to induce outgrowth and branching of neural cells, and nerve fibers in turn infiltrate into tumor microenvironment to promote progression of gastric cancer. Additionally, the neuro-immune interaction also plays an important role in gastric cancer development. The interplay of nerves and gastric cancer is mediated by many nervous system-associated factors, which can not only be synthesized and released by both cancer cells and nerve terminals, but also participate in regulation of many aspects of gastric cancer such as cell proliferation, angiogenesis, metastasis and recurrence. Furthermore, clinical researches indicate that some of these factors are significant diagnosis and prognosis biomarkers for gastric cancer. Herein, we reviewed recent advances and future prospects of the interaction between nervous system and gastric cancer.
Collapse
Affiliation(s)
- Ke Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin-Hui Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China.
| | - Ji-Peng Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
20
|
Liang J, Wu J, Wang F, Zhang P, Zhang X. Semaphoring 4D is required for the induction of antioxidant stress and anti-inflammatory effects of dihydromyricetin in colon cancer. Int Immunopharmacol 2018; 67:220-230. [PMID: 30562683 DOI: 10.1016/j.intimp.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Semaphorin 4D (Sema4D) has been involved in cancer progression, the expression of which is associated with the poor clinical outcomes of some cancer patients. Dihydromyricetin (DMY) has antitumor potentials for different types of human cancer cells. However, the pharmacological effects of DMY on colon cancer (CC) or the regulatory effects of Sema4D on this process remain largely unknown. In the present study, we aimed to evaluate the effects of DMY on CC, and to elucidate the role of Sema4D in DMY-induced antitumor effects. DMY inhibited the proliferation and growth of Colo-205 colon cancer cells significantly in vivo and in vitro. DMY inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) levels, but increased glutathione (GSH) level. Moreover, the activities of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and heme oxygenase 1 (HO-1) were enhanced by DMY treatment in vitro, showing strong anti-oxidative stress effect. In addition, DMY inhibited the secretion of interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) in the supernatant of Colo-205 culture medium. Besides, the expressions of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were suppressed by DMY in dose-dependent manners in vivo, showing potent anti-inflammatory effect. Further investigations showed that DMY suppressed the expression and secretion of Sema4D in Colo-205 cells and tissues. Interestingly, overexpression of Sema4D significantly weakened the regulatory effects of DMY on oxidative stress. Furthermore, overexpression of Sema4D significantly attenuated the anti-inflammatory effects of DMY. Collectively, we drew a conclusion that the anti-colon cancer effect of DMY was attributed to its negative modulation on oxidative stress and inflammation via suppression of Sema4D. The findings broaden the width and depth of molecular mechanisms involved in the DMY action, facilitating the development of DMY in anti-colon cancer therapies.
Collapse
Affiliation(s)
- Jun Liang
- Oncology Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuemei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|