1
|
Khademi Z, Mottaghi-Dastjerdi N, Morad H, Sahebkar A. The role of CRISPR-Cas9 and CRISPR interference technologies in the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103816. [PMID: 40221070 DOI: 10.1016/j.autrev.2025.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Autoimmune disorders can be described as inappropriate immune responses directed against self-antigens, which account for substantial healthcare concerns around the world. Immunosuppression or immune modulation are the main therapeutic modalities for autoimmune disorders. These modalities, however, impair the ability of the immune system to fight against infections, thereby predisposing to opportunistic diseases. This review explores existing therapies for autoimmune disorders, highlighting their limitations and challenges. Additionally, it describes the potential of CRISPR-Cas9 technology as a novel therapeutic approach to address these challenges.
Collapse
Affiliation(s)
- Zahra Khademi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Xu X, Zhang Y, Huang G, Perekatt A, Wang Y, Chen L. Advances and applications of gut organoids: modeling intestinal diseases and therapeutic development. LIFE MEDICINE 2025; 4:lnaf012. [PMID: 40276096 PMCID: PMC12018802 DOI: 10.1093/lifemedi/lnaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
Gut organoids are 3D cellular structures derived from adult or pluripotent stem cells, capable of closely replicating the physiological properties of the gut. These organoids serve as powerful tools for studying gut development and modeling the pathogenesis of intestinal diseases. This review provides an in-depth exploration of technological advancements and applications of gut organoids, with a focus on their construction methods. Additionally, the potential applications of gut organoids in disease modeling, microenvironmental simulation, and personalized medicine are summarized. This review aims to offer perspectives and directions for understanding the mechanisms of intestinal health and disease as well as for developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Yuping Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Key Laboratory of Basic and Translational Research of Malignant Tumor, Shantou Central Hospital, Shantou 515041, China
| | - Ansu Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
- Institute of Microphysiological Systems, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Chen Y, Li D, Sun L, Qi K, Shi L. Pharmacological inhibition of toll-like receptor 4 with TLR4-IN-C34 modulates the intestinal flora homeostasis and the MyD88/NF-κB axis in ulcerative colitis. Eur J Pharmacol 2022; 934:175294. [PMID: 36152840 DOI: 10.1016/j.ejphar.2022.175294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4, a highly conserved protein of innate immunity, is responsible for the regulation and maintenance of homeostasis. It has been implicated in the progression of ulcerative colitis (UC) by interacting with its downstream pathway myeloid differentiation factor 88 (MyD88) and nuclear factor kappa B (NF-κB). This study aimed to evaluate the effect of a specific inhibitor of toll-like receptor 4, TLR4-IN-C34 on gut microbiota to elucidate its mechanism in UC mice. Dextran sulfate sodium significantly induced weight loss, diarrhea and rectal bleeding, and colonic damage in mice, which occurred concomitant with dysbiosis of intestinal flora. Intestinal dysbiosis were partially ameliorated by TLR4-IN-C34. Meanwhile, a reduction in inflammatory cell infiltration, enhanced antioxidant activity in colon tissues, and reconstruction of intestinal barrier were observed in mice administrated with TLR4-IN-C34. MyD88 and NF-κB were significantly reduced after TLR4-IN-C34 treatment. MyD88-/- mice were found with improved dysbiosis of intestinal flora, which was mitigated by overexpression of NF-κB. Collectively, our results suggest that TLR4-IN-C34 alleviates UC in mice by blocking the MyD88/NF-κB pathway to improve intestinal flora dysbiosis, inflammatory infiltration, oxidative stress and intestinal barrier function.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Dongyue Li
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Liying Sun
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Kai Qi
- Department of Emergency, Ye County Hospital of Traditional Chinese Medicine, Pingdingshan, 467200, Henan, PR China
| | - Lijun Shi
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| |
Collapse
|
4
|
|
5
|
Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD. J Crohns Colitis 2020; 15:1222-1235. [PMID: 33341879 PMCID: PMC8256633 DOI: 10.1093/ecco-jcc/jjaa257] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota appears to play a central role in health, and alterations in the gut microbiota are observed in both forms of inflammatory bowel disease [IBD], namely Crohn's disease and ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota interactions in disease onset and progression is pivotal, and requires representative models mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota, and immune cells. New advancements in organoid microfluidics technology are facilitating the study of IBD-related microbial-epithelial cross-talk, and the discovery of novel microbial therapies. Here, we review different organoid-based ex vivo models that are currently available, and benchmark their suitability and limitations for specific research questions. Organoid applications, such as patient-derived organoid biobanks for microbial screening and 'omics technologies, are discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms and eventually allow personalised medicine.
Collapse
Affiliation(s)
- Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| | - Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Development and Regeneration, Stem Cell Institute Leuven [SCIL], KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium,Corresponding author: Marc Ferrante, MD, PhD, Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32 16 344225;
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
6
|
Wu M, Hu N, Du X, Wei J. Application of CRISPR/Cas9 technology in sepsis research. Brief Funct Genomics 2020; 19:229-234. [PMID: 32058568 DOI: 10.1093/bfgp/elz040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas9, as a new genome-editing tool, offers new approaches to understand and treat diseases, which is being rapidly applied in various areas of biomedical research including sepsis field. The type II prokaryotic CRISPR/Cas system uses a single-guide RNA (sgRNA) to target the Cas9 nuclease to a specific genomic sequence, which is introduced into disease models for functional characterization and for testing of therapeutic strategies. This incredibly precise technology can be used for therapeutic research of gene-related diseases and to program any sequence in a target cell. Most importantly, the multifunctional capacity of this technology allows simultaneous editing of several genes. In this review, we focus on the basic principles, advantages and limitations of CRISPR/Cas9 and the use of the CRISPR/Cas9 system as a powerful tool in sepsis research and as a new strategy for the treatment of sepsis.
Collapse
|
7
|
CRISPR/Cas9-targeting of CD40 in hematopoietic stem cells limits immune activation mediated by anti-CD40. PLoS One 2020; 15:e0228221. [PMID: 32155151 PMCID: PMC7064223 DOI: 10.1371/journal.pone.0228221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/09/2020] [Indexed: 01/16/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are complex, multifactorial disorders characterized by chronic relapsing intestinal inflammation. IBD is diagnosed around 1 in 1000 individuals in Western countries with globally increasing incident rates. Association studies have identified hundreds of genes that are linked to IBD and potentially regulate its pathology. The further dissection of the genetic network underlining IBD pathogenesis and pathophysiology is hindered by the limited capacity to functionally characterize each genetic association, including generating knockout animal models for every associated gene. Cutting-edge CRISPR/Cas9-based technology may transform the field of IBD research by efficiently and effectively introducing genetic alterations. In the present study, we used CRISPR/Cas9-based technologies to genetically modify hematopoietic stem cells. Through cell sorting and bone marrow transplantation, we established a system to knock out target gene expression by over 90% in the immune system of reconstituted animals. Using a CD40-mediated colitis model, we further validated our CRISPR/Cas9-based platform for investigating gene function in experimental IBD. In doing so, we developed a model system that delivers genetically modified mice in a manner much faster than conventional methodology, significantly reducing the time from target identification to in vivo target validation and expediting drug development.
Collapse
|