1
|
Akhlaghipour I, Moghbeli M. MicroRNA-98 as a novel diagnostic marker and therapeutic target in cancer patients. Discov Oncol 2024; 15:385. [PMID: 39210158 PMCID: PMC11362465 DOI: 10.1007/s12672-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs (miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic target among cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
4
|
An J, Hu X, Liu F. Current understanding of cancer stem cells: Immune evasion and targeted immunotherapy in gastrointestinal malignancies. Front Oncol 2023; 13:1114621. [PMID: 36910604 PMCID: PMC9996315 DOI: 10.3389/fonc.2023.1114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
As a relatively rare population of cancer cells existing in the tumor microenvironment, cancer stem cells (CSCs) possess properties of immune privilege to evade the attack of immune system, regulated by the microenvironment of CSCs, the so-called CSCs niche. The bidirectional interaction of CSCs with tumor microenvironment (TME) components favors an immunosuppressive shelter for CSCs' survival and maintenance. Gastrointestinal cancer stem cells (GCSCs) are broadly regarded to be intimately involved in tumor initiation, progression, metastasis and recurrence, with elevated tumor resistance to conventional therapies, which pose a major hindrance to the clinical efficacy for treated patients with gastrointestinal malignancies. Thus, a multitude of efforts have been made to combat and eradicate GCSCs within the tumor mass. Among diverse methods of targeting CSCs in gastrointestinal malignancies, immunotherapy represents a promising strategy. And the better understanding of GCSCs immunomodulation and immunoresistance mechanisms is beneficial to guide and design novel GCSCs-specific immunotherapies with enhanced immune response and clinical efficacy. In this review, we have gathered available and updated information to present an overview of the immunoevasion features harbored by cancer stem cells, and we focus on the description of immune escape strategies utilized by CSCs and microenvironmental regulations underlying CSCs immuno-suppression in the context of gastrointestinal malignancies. Importantly, this review offers deep insights into recent advances of CSC-targeting immunotherapeutic approaches in gastrointestinal cancers.
Collapse
Affiliation(s)
- Junyi An
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Hu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Tan B, Zhang J, Wang W, Ma H, Yang Y. Tumor-suppressive E3 ubiquitin ligase CHIP inhibits the PBK/ERK axis to repress stem cell properties and radioresistance in non-small cell lung cancer. Apoptosis 2022; 28:397-413. [PMID: 36436119 DOI: 10.1007/s10495-022-01789-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
Recently, radioresistant cancer cells surviving radiotherapy have been suggested to show more aggressive phenotypes than parental cells, and the underlying mechanisms may be associated with cancer stem cells. This study provided novel mechanistic insights for E3 ubiquitin ligase CHIP in stem cell properties and radioresistance of non-small cell lung cancer (NSCLC). After bioinformatic prediction for key genes involved, NSCLC tissues and cells were collected to measure the expression of CHIP and PBK. E3 ubiquitin ligase CHIP was poorly expressed, while PBK was highly expressed in NSCLC tissues and cells. CHIP reduced the protein stability of PBK through the ubiquitin-protease pathway to repress the activation of ERK pathway. Based on the gain- or loss-of-function experiments, it was noted that restoration of CHIP curtailed stem cell properties and radioresistance in NSCLC, as manifested by inhibited sphere formation and cell proliferation, decreased number of CD133+CD44+ cells and expression of OCT4, SOX2, and NANOG, as well as facilitated apoptosis of NSCLC cells. Besides, in vivo animal experiments further confirmed that CHIP restrained tumorigenic ability and improved radiosensitivity of NSCLC cells by inhibiting PBK/ERK axis. Collectively, CHIP suppressed stem cell properties and radioresistance of NSCLC cells by inhibiting PBK/ERK axis, therefore offering a potential therapeutic target for enhancing efficacy of radiotherapy.
Collapse
Affiliation(s)
- Bo Tan
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China.
| | - Jingwei Zhang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| | - Wen Wang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yuanyuan Yang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Jinshui, Zhengzhou, 450008, Henan, China
| |
Collapse
|
6
|
Chivu-Economescu M, Necula LG, Matei L, Dragu D, Bleotu C, Sorop A, Herlea V, Dima S, Popescu I, Diaconu CC. Collagen Family and Other Matrix Remodeling Proteins Identified by Bioinformatics Analysis as Hub Genes Involved in Gastric Cancer Progression and Prognosis. Int J Mol Sci 2022; 23:ijms23063214. [PMID: 35328635 PMCID: PMC8950589 DOI: 10.3390/ijms23063214] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer has remained in the top five cancers for over ten years, both in terms of incidence and mortality due to the shortage of biomarkers for disease follow-up and effective therapies. Aiming to fill this gap, we performed a bioinformatics assessment on our data and two additional GEO microarray profiles, followed by a deep analysis of the 40 differentially expressed genes identified. PPI network analysis and MCODE plug-in pointed out nine upregulated hub genes coding for proteins from the collagen family (COL12A1, COL5A2, and COL10A1) or involved in the assembly (BGN) or degradation of collagens (CTHRC1), and also associated with cell adhesion (THBS2 and SPP1) and extracellular matrix degradation (FAP, SULF1). Those genes were highly upregulated at the mRNA and protein level, the increase being correlated with pathological T stages. The high expression of BGN (p = 8 × 10−12), THBS2 (p = 1.2 × 10−6), CTHRC1 (p = 1.1 × 10−4), SULF1 (p = 3.8 × 10−4), COL5A1 (p = 1.3 × 10−4), COL10A1 (p = 5.7 × 10−4), COL12A1 (p = 2 × 10−3) correlated with poor overall survival and an immune infiltrate based especially on immunosuppressive M2 macrophages (p-value range 4.82 × 10−7–1.63 × 10−13). Our results emphasize that these genes could be candidate biomarkers for GC progression and prognosis and new therapeutic targets.
Collapse
Affiliation(s)
- Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
- Correspondence: or ; Tel.: +40-21-324-2592
| | - Laura G. Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (V.H.); (I.P.)
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| | - Denisa Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| | - Andrei Sorop
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (S.D.)
| | - Vlad Herlea
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (V.H.); (I.P.)
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence for Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (S.D.)
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irinel Popescu
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (V.H.); (I.P.)
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Carmen C. Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.G.N.); (L.M.); (D.D.); (C.B.); (C.C.D.)
| |
Collapse
|
7
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Zhan P, Shu X, Chen M, Sun L, Yu L, Liu J, Sun L, Yang Z, Ran Y. miR-98-5p inhibits gastric cancer cell stemness and chemoresistance by targeting branched-chain aminotransferases 1. Life Sci 2021; 276:119405. [PMID: 33798550 DOI: 10.1016/j.lfs.2021.119405] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
AIMS Gastric cancer stem cells (GCSCs) have been used as a therapeutic target. This study aims to estimate the role of miR-98-5p (termed miR-98) in the development of GCSCs. MAIN METHODS The expression of miR-98 in CD44+ GCSCs was verified by RT-PCR. The miR-98 was overexpressed in CD44+ GCSCs by Lentivirus. The ability of self-renewal, invasion, chemoresistance and tumorigenicity was detected in vitro or in vivo after overexpression of miR-98. The target genes of miR-98 were predicted and verified by luciferase reporter assays. The effects miR-98/BCAT1 signaling on the chemoresistance and tumorigenicity of CD44+ GCSCs were investigated in a xenograft model by rescue experiments. KEY FINDINGS We have shown that miR-98 was decreased in CD44+ GCSCs. The overexpression of miR-98 could inhibit the expression of stem-related genes and the ability of self-renewal, invasion, and tumorigenicity of GCSCs. Also, we found that miR-98 overexpression enhances the sensitivity to cisplatin treatment in vitro. Using a xenograft model, we showed that miR-98 overexpression reversed paclitaxel resistance to CD44+ GCSCs. Finally, we found that branched-chain aminotransferases 1 (BCAT1) is a target gene of miR-98. Overexpressed BCAT1 reversed xenograft tumor formation ability and attenuated the paclitaxel chemosensitivity induced by miR-98 downregulation. Furthermore, BCAT1 restoration affected the expression of invasion and drug resistance-related genes. SIGNIFICANCE This study revealed miR-98 inhibits gastric cancer cell stemness and chemoresistance by targeting BCAT1, suggesting that this miR-98/BCAT1 axis represents a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Panpan Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xiong Shu
- Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, PR China
| | - Meng Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Lixin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Jun Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Zhihua Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| |
Collapse
|
9
|
Chang L, Li J, Ding J, Lian Y, Huangfu C, Wang K. Roles of long noncoding RNAs on tumor immune escape by regulating immune cells differentiation and function. Am J Cancer Res 2021; 11:2369-2385. [PMID: 34249405 PMCID: PMC8263655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/20/2021] [Indexed: 06/13/2023] Open
Abstract
A long noncoding RNA (lncRNA) transcript is generally more than 200 nucleotides in length and rarely codes for any protein. Currently, many lncRNAs have been identified among mammalian genomes, and their known functions are associated with various physiological activities or pathological processes. Some lncRNAs are dysregulated in a variety of malignant tumors, while increasing evidence indicates that abnormal expression can contribute to the regulation of immune cells in tumors and to shaping the immune response. More specifically, lncRNAs participate in regulating the differentiation of immune cells, also known as myeloid and lymphoid cells, as well as recruiting various immunosuppressive factors to influence the tumor microenvironment, thereby promoting tumor cell immune escape. However, we still know very little about the specific mechanism of lncRNAs in immune escape of cancer. Nonetheless, although unprecedented achievements have allowed the development of a new generation of anti-tumor immune therapies to be applied in clinical trials, the drug resistance caused by immune escape has become a major clinical challenge. The focus of this review is to describe the relationship among lncRNAs, immune cells, and tumor immune escape, in order to identify novel diagnostic and therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Juan Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital, Xiamen UniversityXiamen, Fujian, People’s Republic of China
| | - Chaonan Huangfu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
10
|
Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res 2020; 10:3083-3105. [PMID: 33163259 PMCID: PMC7642666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023] Open
Abstract
The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Zhi Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s HospitalWenzhou 325000, PR China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| |
Collapse
|