1
|
Zhang L, Chen L, Jiang Y, Jin G, Yang J, Sun H, Liang J, Lv G, Yang Q, Yi S, Chen G, Liu W, Ou J, Yang Y. Cross-species metabolomic profiling reveals phosphocholine-mediated liver protection from cold and ischemia/reperfusion. Am J Transplant 2024; 24:1979-1993. [PMID: 38878865 DOI: 10.1016/j.ajt.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Cold and ischemia/reperfusion (IR)-associated injuries are seemingly inevitable during liver transplantation and hepatectomy. Because Syrian hamsters demonstrate intrinsic tolerance to transplantation-like stimuli, cross-species comparative metabolomic analyses were conducted with hamster, rat, and donor liver samples to seek hepatic cold and IR-adaptive mechanisms. Lower hepatic phosphocholine contents were found in recipients with early graft-dysfunction and with virus-caused cirrhosis or high model for end-stage liver disease scores (≥30). Choline/phosphocholine deficiency in cultured human THLE-2 hepatocytes and animal models weakened hepatocellular cold tolerance and recovery of glutathione and ATP production, which was rescued by phosphocholine supplements. Among the biological processes impacted by choline/phosphocholine deficiency, 3 lipid-related metabolic processes were downregulated, whereas phosphocholine elevated the expression of genes in methylation processes. Consistently, in THLE-2, phosphocholine enhanced the overall RNA m6A methylation, among which the transcript stability of fatty acid desaturase 6 (FADS6) was improved. FADS6 functioned as a key phosphocholine effector in the production of polyunsaturated fatty acids, which may facilitate the hepatocellular recovery of energy and redox homeostasis. Thus, our study reveals the choline-phosphocholine metabolism and its downstream FADS6 functions in hepatic adaptation to cold and IR, which may inspire new strategies to monitor donor liver quality and improve recipient recovery from the liver transplantation process.
Collapse
Affiliation(s)
- Lele Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Jiang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinghong Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haobin Sun
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinliang Liang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Lin Y, Huang H, Cao J, Zhang K, Chen R, Jiang J, Yi X, Feng S, Liu J, Zheng S, Ling Q. An integrated proteomics and metabolomics approach to assess graft quality and predict early allograft dysfunction after liver transplantation: a retrospective cohort study. Int J Surg 2024; 110:3480-3494. [PMID: 38502860 PMCID: PMC11175820 DOI: 10.1097/js9.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Early allograft dysfunction (EAD) is a common complication after liver transplantation (LT) and is associated with poor prognosis. Graft itself plays a major role in the development of EAD. We aimed to reveal the EAD-specific molecular profiles to assess graft quality and establish EAD predictive models. METHODS A total of 223 patients who underwent LT were enrolled and divided into training ( n =73) and validation ( n =150) sets. In the training set, proteomics was performed on graft biopsies, together with metabolomics on paired perfusates. Differential expression, enrichment analysis, and protein-protein interaction network were used to identify the key molecules and pathways involved. EAD predictive models were constructed using machine learning and verified in the validation set. RESULTS A total of 335 proteins were differentially expressed between the EAD and non-EAD groups. These proteins were significantly enriched in triglyceride and glycerophospholipid metabolism, neutrophil degranulation, and the MET-related signaling pathway. The top 12 graft proteins involved in the aforementioned processes were identified, including GPAT1, LPIN3, TGFB1, CD59, and SOS1. Moreover, downstream metabolic products, such as lactate dehydrogenase, interleukin-8, triglycerides, and the phosphatidylcholine/phosphorylethanolamine ratio in the paired perfusate displayed a close relationship with the graft proteins. To predict the occurrence of EAD, an integrated model using perfusate metabolic products and clinical parameters showed areas under the curve of 0.915 and 0.833 for the training and validation sets, respectively. It displayed superior predictive efficacy than that of currently existing models, including donor risk index and D-MELD scores. CONCLUSIONS We identified novel biomarkers in both grafts and perfusates that could be used to assess graft quality and provide new insights into the etiology of EAD. Herein, we also offer a valid tool for the early prediction of EAD.
Collapse
Affiliation(s)
- Yimou Lin
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaying Cao
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ke Zhang
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jingyu Jiang
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xuewen Yi
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shi Feng
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Shusen Zheng
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, Hangzhou, China
| | - Qi Ling
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, Hangzhou, China
| |
Collapse
|
3
|
Chen LJ, Xin Y, Yuan MX, Ji CY, Peng YM, Yin Q. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation. Am J Physiol Cell Physiol 2023; 325:C796-C806. [PMID: 37575056 DOI: 10.1152/ajpcell.00462.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
We aimed to examine impacts and functional mechanism of circular RNA forkhead box N2 (FOXN2) in tacrolimus (TAC)- and dexamethasone (Dex)-induced lipid metabolism disorders. RNA level and protein contents in TAC, Dex, or combined TAC- plus Dex-treated patients and Huh-7 cells were measured utilizing quantitative real-time (qRT)-PCR and western blotting assays measured the formation of lipid droplet. Total cholesterol (TC) and triglyceride (TG) levels were determined using corresponding commercial kits and Oil red O staining. RNA immunoprecipitation and RNA pull-down verified the binding relationship among circFOXN2, polypyrimidine tract binding protein 1 (PTBP1) and fatty acid synthase (FASN). Male C57BL/6 mice were used to establish a dyslipidemia mouse model to validate the discoveries at the cellular level. Dex treatment significantly promoted TAC-mediated increase of TC and TG in serum samples and Huh-7 cells. Moreover, circFOXN2 was reduced but FASN was elevated in TAC-treated Huh-7 cells, and these expression trends were markedly enhanced by Dex cotreatment. Overexpression of circFOXN2 could reverse the accumulation of TC and TG and the upregulation of FASN and sterol regulatory element binding transcription factor 2 (SREBP2) mediated by Dex and TAC cotreatment. Mechanistically, circFOXN2 reduced FASN mRNA stability by recruiting PTBP1. The protective roles of circFOXN2 overexpression on lipid metabolism disorders were weakened by FASN overexpression. In vivo finding also disclosed that circFOXN2 greatly alleviated the dysregulation of lipid metabolism triggered by TAC plus Dex. CircFOXN2 alleviated the dysregulation of lipid metabolism induced by the combination of TAC and Dex by modulating the PTBP1/FASN axis.NEW & NOTEWORTHY Collectively, our experiments revealed for the first time that circFOXN2 alleviated the Dex- and TAC-induced dysregulation of lipid metabolism by regulating the PTBP1/FASN axis. These findings suggested that circFOXN2 and FASN might be candidate targets for the treatment of Dex- and TAC-induced metabolic disorders.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yang Xin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Miao-Xian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Chun-Yi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yu-Ming Peng
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| |
Collapse
|
4
|
He Z, Lin Y, Dong S, Ke Q, Zheng S, Ling Q. Development and validation of a nomogram model for predicting chronic kidney disease after liver transplantation: a multi-center retrospective study. Sci Rep 2023; 13:11380. [PMID: 37452094 PMCID: PMC10349045 DOI: 10.1038/s41598-023-38626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a frequent complication after liver transplantation (LT) and associated with poor prognosis. In this study, we retrospectively analyzed 515 adult patients who underwent LT in our center. They were randomly divided into a training set (n = 360) and an internal test set (n = 155). Another 118 recipients in other centers served as external validation set. Univariate and multivariate COX regression analysis were used to determine risk factors. A nomogram model was developed to predict post-LT CKD. The incidence of post-LT CKD in our center was 16.9% (87/515) during a median follow-up time of 22.73 months. The overall survival of recipients with severe CKD (stage IV and V) were significantly lower than those with non or mild CKD (stage III) (p = 0.0015). A nomogram model was established based on recipient's age, anhepatic phase, estimated glomerular filtration rate and triglyceride levels at 30 days after LT. The calibration curves for post-LT CKD prediction in the nomogram were consistent with the actual observation in both the internal and external validation set. In conclusion, severe post-LT CKD resulted in a significantly reduced survival in liver recipient. The newly established nomogram model had good predictive ability for post-LT CKD.
Collapse
Affiliation(s)
- Zenglei He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yimou Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Siyi Dong
- China Liver Transplant Registry, Hangzhou, 310003, China
| | - Qinghong Ke
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qi Ling
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Karpe AV, Liu JW, Shah A, Koloski N, Holtmann G, Beale DJ. Utilising lipid and, arginine and proline metabolism in blood plasma to differentiate the biochemical expression in functional dyspepsia (FD) and irritable bowel syndrome (IBS). Metabolomics 2022; 18:38. [PMID: 35687195 DOI: 10.1007/s11306-022-01900-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Functional gastrointestinal disorders (FGID) such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are highly prevalent and debilitating attributed to altered gut function and gut-brain interactions. FGID can be reliably diagnosed based upon the symptom pattern; but in the clinical setting FD or IBS a frequent diagnoses of exclusion after relevant structural causes of symptoms have been ruled out by appropriate testing. Thus far, there is no established biomarker for FGIDs. To address this limitation, we utilised multi-omics and chemometrics integration to characterise the blood plasma biochemistry in patients with IBS, FD, an overlap of FD/IBS, and controls using liquid chromatography-mass spectrometry (LC-MS) techniques.Cholesterol metabolism products Cholest-5,24-dien-3β-ol, 3-O-β-D-glucopyranoside, energy pathway metabolites, immunoglobulin-γ2 and immunoglobulin-κ, and carbonic anhydrase-1 proteins were particularly elevated in IBS. Furthermore, arginine and proline metabolisms, thyroid hormone synthesis, ferroptosis and, complementary and coagulation cascades were particularly upregulated in patients with IBS. Cer(d18:1/26:1(17Z)) and PI(14:0/22:1(11Z)) lipids were elevated in FD and FD-IBS but were depleted in IBS. Markers of central carbon metabolism and lipidome profiles allowed better discrimination and model predictability than metaproteome profile in healthy and FGID conditions.Overall, the multi-omics integration allowed the discrimination of healthy controls and FGID patients. It also effectively differentiated the biochemistry of FGID subtypes including FD, IBS and FD-IBS co-occurrence. This study points towards the possibility of multi-omics integration for rapid and high throughput analysis of plasma samples to support clinicians screen and diagnose patients with suspected FGIDs.
Collapse
Affiliation(s)
- Avinash V Karpe
- CSIRO Land and Water, P. O. Box 2583, 4001, Dutton Park, QLD, Australia
- Department of Chemistry & Biotechnology, School of Science, Computing & Engineering Technologies (SoSCET), Swinburne University of Technology, 3122, Hawthorn, VIC, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain, Clunies Ross Street, 2601, Acton, ACT, Australia
| | - Ayesha Shah
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, 4103, Woolloongabba, QLD, Australia
| | - Natasha Koloski
- Faculty of Health and Medicine, University of Newcastle, 2308, Callaghan, NSW, Australia
- School of Medicine, The University of Queensland, 4072, St. Lucia, QLD, Australia
| | - Gerald Holtmann
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, 4103, Woolloongabba, QLD, Australia
- School of Medicine, The University of Queensland, 4072, St. Lucia, QLD, Australia
| | - David J Beale
- CSIRO Land and Water, P. O. Box 2583, 4001, Dutton Park, QLD, Australia.
| |
Collapse
|
6
|
Wei RL, Fan GH, Zhang CZ, Chen KC, Zhang WH, Li CB, Dong SY, Chen JL, Ling SB, Zheng SS, Xu X. Prognostic implication of early posttransplant hypercholesterolemia in liver transplantation for patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2022; 22:228-238. [PMID: 35613994 DOI: 10.1016/j.hbpd.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hyperlipidemia is a common complication after liver transplantation (LT) and develops mostly in the early posttransplant period. Recently, some studies have reported a positive correlation between hyperlipidemia and favorable prognosis in patients with hepatocellular carcinoma (HCC) undergoing hepatectomy. This study aimed to evaluate the possibility of predicting prognosis in HCC patients receiving LT by early posttransplant dyslipidemia. METHODS From January 2015 to December 2017, a total of 806 HCC patients from China Liver Transplant Registry database were retrospectively enrolled. The prognostic relevance of early posttransplant hypertriglyceridemia or hypercholesterolemia was examined using survival analysis, and subgroup analysis was implemented based on LT criteria. RESULTS Early posttransplant hypercholesterolemia (EPHC) was independently inversely associated with the risk of recurrence [hazard ratio (HR) = 0.630; P = 0.022], but was not significantly correlated with the mortality. However, early posttransplant hypertriglyceridemia was not related to prognosis. Intriguingly, with further classification, we found that borderline EPHC (B-EPHC), instead of significant EPHC, was a predictor of lower risk for both recurrence (HR = 0.504; P = 0.006) and mortality (HR = 0.511; P = 0.023). Compared with non-EPHC patients, B-EPHC patients achieved significantly superior 1-year and 3-year tumor-free survival (89.6% and 83.7% vs. 83.8% and 72.7% respectively; P = 0.023), and 1-year and 3-year overall survival (95.8% and 84.8% vs. 94.6% and 77.6% respectively; P = 0.039). In the subgroup analysis, B-EPHC remained an independent predictor of better prognosis in patients beyond Milan criteria and those within Hangzhou criteria; whereas there was no significant relationship between B-EPHC and prognosis in patients within Milan criteria and those beyond Hangzhou criteria. More interestingly, patients beyond Milan criteria but within Hangzhou criteria were identified as the crucial subpopulation who benefited from B-EPHC (recurrence HR = 0.306, P = 0.011; mortality HR = 0.325, P = 0.031). CONCLUSIONS B-EPHC could assist transplant teams in dynamically evaluating prognosis after LT for HCC as a postoperative non-oncological biomarker, especially in patients beyond Milan criteria but within Hangzhou criteria.
Collapse
Affiliation(s)
- Rong-Li Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| | - Guang-Han Fan
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| | - Chen-Zhi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| | - Kang-Chen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| | - Wen-Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| | - Chang-Biao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| | - Si-Yi Dong
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, 310003, China
| | - Jun-Li Chen
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, 310003, China
| | - Sun-Bin Ling
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China; National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China; National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
8
|
Bhat M, Usmani SE, Azhie A, Woo M. Metabolic Consequences of Solid Organ Transplantation. Endocr Rev 2021; 42:171-197. [PMID: 33247713 DOI: 10.1210/endrev/bnaa030] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Metabolic complications affect over 50% of solid organ transplant recipients. These include posttransplant diabetes, nonalcoholic fatty liver disease, dyslipidemia, and obesity. Preexisting metabolic disease is further exacerbated with immunosuppression and posttransplant weight gain. Patients transition from a state of cachexia induced by end-organ disease to a pro-anabolic state after transplant due to weight gain, sedentary lifestyle, and suboptimal dietary habits in the setting of immunosuppression. Specific immunosuppressants have different metabolic effects, although all the foundation/maintenance immunosuppressants (calcineurin inhibitors, mTOR inhibitors) increase the risk of metabolic disease. In this comprehensive review, we summarize the emerging knowledge of the molecular pathogenesis of these different metabolic complications, and the potential genetic contribution (recipient +/- donor) to these conditions. These metabolic complications impact both graft and patient survival, particularly increasing the risk of cardiovascular and cancer-associated mortality. The current evidence for prevention and therapeutic management of posttransplant metabolic conditions is provided while highlighting gaps for future avenues in translational research.
Collapse
Affiliation(s)
- Mamatha Bhat
- Multi Organ Transplant program and Division of Gastroenterology & Hepatology, University Health Network, Ontario M5G 2N2, Department of Medicine, University of Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shirine E Usmani
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, Ontario, and Sinai Health System, Ontario, University of Toronto, Toronto, Ontario, Canada
| | - Amirhossein Azhie
- Multi Organ Transplant program and Division of Gastroenterology & Hepatology, University Health Network, Ontario M5G 2N2, Department of Medicine, University of Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, Ontario, and Sinai Health System, Ontario, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|