1
|
Kato T, Furusawa A, Okada R, Inagaki F, Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy Targeting Podoplanin-Expressing Cancer Cells and Cancer-Associated Fibroblasts. Mol Cancer Ther 2023; 22:75-88. [PMID: 36223542 PMCID: PMC9812859 DOI: 10.1158/1535-7163.mct-22-0313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-IRDye700DX (IR700) conjugate that binds to a target followed by the application of NIR light that results in dramatic changes in solubility of the conjugate leading to rapid cell membrane damage and highly immunogenic cell death. NIR-PIT has been used clinically in treating advanced head and neck cancers using an anti-EGFR antibody-IR700 conjugate and has been conditionally approved for clinical use in Japan. NIR-PIT can be employed using a wide range of targeting antibodies. Podoplanin (PDPN), also known as gp38, is a 38 kDa type-1 transmembrane protein associated with lymphatic vessels. In cancer cells and cancer-associated fibroblasts (CAFs), PDPN expression has been widely reported and correlates with poor outcomes in several cancer types. In this study, we evaluated the efficacy of PDPN-targeted NIR-PIT in syngenetic mouse models of cancer. PDPN-targeted NIR-PIT destroyed PDPN-expressing cancer cells and CAFs selectively, suppressing tumor progression and prolonging survival with minimal damage to lymphatic vessels compared with the control group. Interestingly, PDPN-targeted NIR-PIT also exerted a therapeutic effect by targeting CAFs in tumor models which do not express in cancer cells. Furthermore, increased cytotoxic T cells in the tumor bed after PDPN-targeted NIR-PIT were observed, suggesting enhanced host antitumor immunity. Thus, PDPN-targeted NIR-PIT is a promising new cancer therapy strategy for PDPN-expressing cancer cells and CAFs.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| |
Collapse
|