1
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Lakritz S, Nicklawsky A, Alami V, Kohli M, Moskaluk C, Riedlinger G, Salhia B, Singer EA, Naqash AR, Nepple K, Edge S, Myint Z, Kolesar J, Adra N, Flaig T, Graham LS. Activity of Platinum Chemotherapy in Men With Prostate Cancer With and Without DNA Damage Repair Mutations. Clin Genitourin Cancer 2024; 23:102293. [PMID: 39793235 DOI: 10.1016/j.clgc.2024.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Alterations in homologous recombination repair (HRR) genes occur in 20%-30% of men with metastatic castration-resistant prostate cancer (mCRPC) which may increase sensitivity to platinum chemotherapy. Specifically, exceptional responses to platinum chemotherapy have been reported among patients with BRCA mutations. This study aimed to evaluate the efficacy of platinum chemotherapy in patients with mCRPC with and without HRR. PATIENT AND METHODS In this retrospective, multi-institution series, we analyzed patients with mCRPC to assess response to platinum-containing chemotherapy based on HRR alteration status. Outcome measures were prostate specific antigen (PSA)50 response rate (percentage of patients achieving at least a 50% decline in PSA from baseline), overall survival (OS) and progression-free survival (PFS). RESULTS From 1999 to 2020, 24 patients with mCRPC who received platinum chemotherapy were included with 7 patients analyzable for PSA outcomes. HRR alterations were found in 19 out of 24 patients (79.2%) with mutations recognized in 11 different HRR genes. Patients with a HRR alteration achieved a PSA50 response rate of 20% (1 out of 5) after platinum chemotherapy compared to 50% (1 out of 2) in patients without a HRR mutation. No difference in OS or PSA PFS was detected among patients with BRCA1/2 mutations compared to HRR alterations other than BRCA1/2 and patients without HRR alterations. CONCLUSION In patients with mCRPC, we did not find a statistical difference in anti-tumor activity after receiving platinum chemotherapy among patients harboring a pathogenic HRR alterations compared to patients without a HRR alteration. Additionally, we were unable to detect an association between BRCA1/2 mutation status and response to platinum chemotherapy. Platinum chemotherapy, however, had clinically meaningful activity in a subset of patients regardless of HRR alteration status. Additional studies are warranted using genomic data to predict sensitivity to platinum chemotherapy.
Collapse
Affiliation(s)
| | | | - Vida Alami
- University of Colorado Cancer Center, Aurora, CO
| | - Manish Kohli
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | - Chris Moskaluk
- University of Virginial Medical Center, Charlottesville, VA
| | | | - Bodour Salhia
- Univeristy of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Eric A Singer
- Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Ken Nepple
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA
| | - Stephen Edge
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Zin Myint
- University of Kentucky Markey Cancer Center, Lexington, KY
| | - Jill Kolesar
- University of Kentucky Markey Cancer Center, Lexington, KY
| | - Nabil Adra
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Thomas Flaig
- University of Colorado Cancer Center, Aurora, CO
| | | |
Collapse
|
3
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
4
|
Qadir RMAB, Umair MB, Tariq UB, Ahmad A, Kiran W, Shahid MH. Unraveling Pancreatic Cancer: Epidemiology, Risk Factors, and Global Trends. Cureus 2024; 16:e72816. [PMID: 39493341 PMCID: PMC11528318 DOI: 10.7759/cureus.72816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies, characterized by late diagnosis, rapid progression, and limited treatment options. This literature review comprehensively examines the epidemiology, risk factors, diagnostic challenges, treatment modalities, and prognosis of pancreatic cancer. It highlights the global disparities in incidence and outcomes, exploring the influence of socioeconomic, environmental, and genetic factors on disease progression. In addition, this review discusses recent advancements in diagnostic tools and treatment strategies, identifying gaps in current research and clinical practices. The synthesis aims to inform future research directions and policy-making efforts to reduce the global burden of pancreatic cancer and improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Umar Bin Tariq
- General Surgery, Southmead Hospital Bristol, North Bristol NHS Trust, Bristol, GBR
| | - Arslan Ahmad
- Emergency Medicine, Weston General Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Weston-super-Mare, GBR
| | - Wajeeha Kiran
- Trauma and Orthopaedics, Morriston Hospital, Swansea, GBR
| | | |
Collapse
|
5
|
Elhariri A, Patel J, Mahadevia H, Albelal D, Ahmed AK, Jones JC, Borad MJ, Babiker H. Identifying Actionable Alterations in KRAS Wild-Type Pancreatic Cancer. Target Oncol 2024; 19:679-689. [PMID: 39123077 DOI: 10.1007/s11523-024-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The 5-year relative survival rate for pancreatic cancer is currently the lowest among all cancer types with a dismal 13%. A Kirsten rat sarcoma virus (KRAS) gene mutation is present in approximately 90% of patients with pancreatic cancer; however, KRAS-specific drugs are not yet widely used in clinical practice for pancreatic cancer, specifically the KRASG12D variant. Advances in genomic testing revealed an opportunity to detect genetic alterations in a subset of patients with no KRAS mutation termed KRAS wild-type. Patients with KRAS wild-type tumors have a propensity to express driver alterations, hence paving the way for utilizing a targeted therapy approach either via clinical trials or standard-of-care drugs. These alterations include fusions, amplifications, translocations, rearrangements and microsatellite instability-high tumors and can be as high as 11% in some studies. Here, we discuss some of the most notable alterations in KRAS wild-type and highlight promising clinical trials.
Collapse
Affiliation(s)
- Ahmed Elhariri
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jaydeepbhai Patel
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Himil Mahadevia
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Douaa Albelal
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ahmed K Ahmed
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jeremy C Jones
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Mitesh J Borad
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Hani Babiker
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
6
|
Blackford AL, Canto MI, Dbouk M, Hruban RH, Katona BW, Chak A, Brand RE, Syngal S, Farrell J, Kastrinos F, Stoffel EM, Rustgi A, Klein AP, Kamel I, Fishman EK, He J, Burkhart R, Shin EJ, Lennon AM, Goggins M. Pancreatic Cancer Surveillance and Survival of High-Risk Individuals. JAMA Oncol 2024; 10:1087-1096. [PMID: 38959011 PMCID: PMC11223057 DOI: 10.1001/jamaoncol.2024.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 07/04/2024]
Abstract
Importance Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with increasing incidence. The majority of PDACs are incurable at presentation, but population-based screening is not recommended. Surveillance of high-risk individuals for PDAC may lead to early detection, but the survival benefit is unproven. Objective To compare the survival of patients with surveillance-detected PDAC with US national data. Design, Setting, and Participants This comparative cohort study was conducted in multiple US academic medical centers participating in the Cancer of the Pancreas Screening program, which screens high-risk individuals with a familial or genetic predisposition for PDAC. The comparison cohort comprised patients with PDAC matched for age, sex, and year of diagnosis from the Surveillance, Epidemiology, and End Results (SEER) program. The Cancer of the Pancreas Screening program originated in 1998, and data collection was done through 2021. The data analysis was performed from April 29, 2022, through April 10, 2023. Exposures Endoscopic ultrasonography or magnetic resonance imaging performed annually and standard-of-care surgical and/or oncologic treatment. Main Outcomes and Measures Stage of PDAC at diagnosis, overall survival (OS), and PDAC mortality were compared using descriptive statistics and conditional logistic regression, Cox proportional hazards regression, and competing risk regression models. Sensitivity analyses and adjustment for lead-time bias were also conducted. Results A total of 26 high-risk individuals (mean [SD] age at diagnosis, 65.8 [9.5] years; 15 female [57.7%]) with PDAC were compared with 1504 SEER control patients with PDAC (mean [SD] age at diagnosis, 66.8 [7.9] years; 771 female [51.3%]). The median primary tumor diameter of the 26 high-risk individuals was smaller than in the control patients (2.5 [range, 0.6-5.0] vs 3.6 [range, 0.2-8.0] cm, respectively; P < .001). The high-risk individuals were more likely to be diagnosed with a lower stage (stage I, 10 [38.5%]; stage II, 8 [30.8%]) than matched control patients (stage I, 155 [10.3%]; stage II, 377 [25.1%]; P < .001). The PDAC mortality rate at 5 years was lower for high-risk individuals than control patients (43% vs 86%; hazard ratio, 3.58; 95% CI, 2.01-6.39; P < .001), and high-risk individuals lived longer than matched control patients (median OS, 61.7 [range, 1.9-147.3] vs 8.0 [range, 1.0-131.0] months; 5-year OS rate, 50% [95% CI, 32%-80%] vs 9% [95% CI, 7%-11%]). Conclusions and Relevance These findings suggest that surveillance of high-risk individuals may lead to detection of smaller, lower-stage PDACs and improved survival.
Collapse
Affiliation(s)
- Amanda L. Blackford
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Marcia Irene Canto
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H. Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Bryson W. Katona
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Amitabh Chak
- Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Randall E. Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pennsylvania
| | - Sapna Syngal
- Cancer Genetics and Prevention, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Gastroenterology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - James Farrell
- Yale Center for Pancreatic Disease, Section of Digestive Disease, Yale University, New Haven, Connecticut
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Elena M. Stoffel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Anil Rustgi
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Alison P. Klein
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ihab Kamel
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elliot K. Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Richard Burkhart
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Eun Ji Shin
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Anne Marie Lennon
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Michael Goggins
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
7
|
Cortiana V, Abbas RH, Chorya H, Gambill J, Mahendru D, Park CH, Leyfman Y. Personalized Medicine in Pancreatic Cancer: The Promise of Biomarkers and Molecular Targeting with Dr. Michael J. Pishvaian. Cancers (Basel) 2024; 16:2329. [PMID: 39001391 PMCID: PMC11240738 DOI: 10.3390/cancers16132329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic cancer, with its alarming rising incidence, is predicted to become the second deadliest type of solid tumor by 2040, highlighting the urgent need for improved diagnostic and treatment strategies. Despite medical advancements, the five-year survival rate for pancreatic cancer remains about 14%, dropping further when metastasized. This review explores the promise of biomarkers for early detection, personalized treatment, and disease monitoring. Molecular classification of pancreatic cancer into subtypes based on genetic mutations, gene expression, and protein markers guides treatment decisions, potentially improving outcomes. A plethora of clinical trials investigating different strategies are currently ongoing. Targeted therapies, among which those against CLAUDIN 18.2 and inhibitors of Claudin 18.1, have shown promise. Next-generation sequencing (NGS) has emerged as a powerful tool for the comprehensive genomic analysis of pancreatic tumors, revealing unique genetic alterations that drive cancer progression. This allows oncologists to tailor therapies to target specific molecular abnormalities. However, challenges remain, including limited awareness and uptake of biomarker-guided therapies. Continued research into the molecular mechanisms of pancreatic cancer is essential for developing more effective treatments and improving patient survival rates.
Collapse
Affiliation(s)
- Viviana Cortiana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | | | | | | | - Diksha Mahendru
- Global Remote Research Scholars Program, St. Paul, MN 55101, USA
| | | | - Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Oceanside, NY 11572, USA
| |
Collapse
|
8
|
Fanale D, Corsini LR, Brando C, Randazzo U, Bono M, Pedone E, Perez A, Sciacchitano R, Cancelliere D, Piraino P, Giurintano A, Bazan Russo TD, Ferraro P, Rinaldi G, Spinnato V, Gennusa V, Pernice G, Vieni S, Pantuso G, Russo A, Bazan V. BRCA-associated hereditary male cancers: can gender affect the prevalence and spectrum of germline pathogenic variants? Front Oncol 2024; 14:1414343. [PMID: 38974244 PMCID: PMC11224533 DOI: 10.3389/fonc.2024.1414343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Although hereditary male neoplasms are quite rare, individuals harbouring germline BRCA1/2 pathogenic variants (PVs) may have a risk of developing tumours associated with Hereditary Breast and Ovarian Cancer (HBOC) syndrome, including male breast (MBC), prostate (PCa) and pancreatic (PC) cancers, and melanoma. Women and men showed a comparable genetic architecture of cancer susceptibility, but there are some gender-specific features. Since little is known about cancer genetic susceptibility in male population, our study was aimed at investigating the frequency of BRCA1/2 PVs in men with HBOC syndrome-associated tumors, in order to understand whether differences in gender may reflect in the prevalence and spectrum of germline alterations. Patients and methods We retrospectively collected and analysed clinical information of 352 HBOC-associated male cancer patients genetically tested for germline BRCA1/2 PVs by Next-Generation Sequencing analysis, enrolled, from February 2018 to January 2024, at the "Regional Center for the prevention, diagnosis and treatment of rare and heredo-familial tumors of adults" of the University-Hospital Policlinico "P. Giaccone" of Palermo (Italy). Results Our investigation revealed that 7.4% of patients was carrier of a germline BRCA PV, with an almost total prevalence of BRCA2 alterations. In particular, 65.4% of BRCA-positive patients developed MBC, 19.2% had PC, 11.6% developed PCa, and only 3.8% had melanoma. Specifically, MBC individuals showed a BRCA-associated genetic predisposition in 17% of cases, whereas patients with PCa or PC exhibited a lower frequency of BRCA2 PVs, taking into account the current national criteria for access to germline genetic testing. Discussion Our study showed a high heterogeneity in prevalence of germline BRCA2 PVs among men which could reflect a potential gender-specific genetic heterogeneity. Therefore, BRCA-associated male tumours could be due to BRCA2 PVs different from those usually detected in women. In the event that it is demonstrated, in future, that male cancers are genetically distinct entities from those female this could improve personalized risk evaluation and guide therapeutic choices for patients of both sexes, in order to obtain a gender equality in cancer care.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Roberta Sciacchitano
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Ambra Giurintano
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Pietro Ferraro
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Gaetana Rinaldi
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Valeria Spinnato
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Vincenzo Gennusa
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | | | - Salvatore Vieni
- Division of General and Oncological Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Gianni Pantuso
- Division of General and Oncological Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Abel J, Jain S, Rajan D, Padigela H, Leidal K, Prakash A, Conway J, Nercessian M, Kirkup C, Javed SA, Biju R, Harguindeguy N, Shenker D, Indorf N, Sanghavi D, Egger R, Trotter B, Gerardin Y, Brosnan-Cashman JA, Dhoot A, Montalto MC, Parmar C, Wapinski I, Khosla A, Drage MG, Yu L, Taylor-Weiner A. AI powered quantification of nuclear morphology in cancers enables prediction of genome instability and prognosis. NPJ Precis Oncol 2024; 8:134. [PMID: 38898127 PMCID: PMC11187064 DOI: 10.1038/s41698-024-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
While alterations in nucleus size, shape, and color are ubiquitous in cancer, comprehensive quantification of nuclear morphology across a whole-slide histologic image remains a challenge. Here, we describe the development of a pan-tissue, deep learning-based digital pathology pipeline for exhaustive nucleus detection, segmentation, and classification and the utility of this pipeline for nuclear morphologic biomarker discovery. Manually-collected nucleus annotations were used to train an object detection and segmentation model for identifying nuclei, which was deployed to segment nuclei in H&E-stained slides from the BRCA, LUAD, and PRAD TCGA cohorts. Interpretable features describing the shape, size, color, and texture of each nucleus were extracted from segmented nuclei and compared to measurements of genomic instability, gene expression, and prognosis. The nuclear segmentation and classification model trained herein performed comparably to previously reported models. Features extracted from the model revealed differences sufficient to distinguish between BRCA, LUAD, and PRAD. Furthermore, cancer cell nuclear area was associated with increased aneuploidy score and homologous recombination deficiency. In BRCA, increased fibroblast nuclear area was indicative of poor progression-free and overall survival and was associated with gene expression signatures related to extracellular matrix remodeling and anti-tumor immunity. Thus, we developed a powerful pan-tissue approach for nucleus segmentation and featurization, enabling the construction of predictive models and the identification of features linking nuclear morphology with clinically-relevant prognostic biomarkers across multiple cancer types.
Collapse
|
10
|
Limijadi EKS, Muniroh M, Prajoko YW, Tjandra KC, Respati DRP. The role of germline BRCA1 & BRCA2 mutations in familial pancreatic cancer: A systematic review and meta-analysis. PLoS One 2024; 19:e0299276. [PMID: 38809921 PMCID: PMC11135687 DOI: 10.1371/journal.pone.0299276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Familial Pancreatic Cancer (FPC) presents a notable risk, with 3-10% of pancreatic adenocarcinoma cases having a family history. Studies link FPC to syndromes like HBOC, suggesting BRCA1/BRCA2 mutations play a role. BRCA gene functions in DNA repair impact FPC management, influencing sensitivity to therapies like PARP inhibitors. Identifying mutations not only aids FPC treatment but also reveals broader cancer risks. However, challenges persist in selectively applying genetic testing due to cost constraints. This Systematic Review focuses on BRCA1/BRCA2 significance in FPC, diagnostic criteria, prognostic value, and limitations. METHOD Original articles published from 2013 to January 2023 were sourced from databases such as Scopus, PubMed, ProQuest, and ScienceDirect. Inclusion criteria comprised observational cohort or diagnostic studies related to the role of BRCA1/2 mutation in correlation to familial pancreatic cancer (FPC), while article reviews, narrative reviews, and non-relevant content were excluded. The assessment of bias used ROBINS-I, and the results were organized using PICOS criteria in a Google spreadsheet table. The systematic review adhered to the PRISMA 2020 checklist. RESULT We analyzed 9 diagnostic studies encompassing 1325 families and 4267 patients from Italy, USA, and Poland. Despite the limitation of limited homogenous PICO studies, our findings effectively present evidence. BRCA1/2 demonstrates benefits in detecting first-degree relatives FPC involvement with 2.26-10 times higher risk. These mutation findings also play an important role since with the BRCA1/2 targeted therapy, Poly-ADP Ribose Polymerase inhibitors (PARP) may give better outcomes of FPC treatment. Analysis of BRCA1 and BRCA2 administration's impact on odds ratio (OR) based on six and five studies respectively. BRCA1 exhibited non-significant effects (OR = 1.26, P = 0.51), while BRCA2 showed significance (OR = 1.68, P = 0.04). No heterogeneity observed, indicating consistent results. Further research on BRCA1 is warranted. CONCLUSION Detecting the BRCA1/2 mutation gene offers numerous advantages, particularly in its correlation with FPC. For diagnostic and prognostic purposes, testing is strongly recommended for first-degree relatives, who face a significantly higher risk (2.26-10 times) of being affected. Additionally, FPC patients with identified BRCA1/2 mutations exhibit a more favorable prognosis compared to the non-mutated population. This is attributed to the availability of targeted BRCA1/2 therapy, which maximizes treatment outcomes.
Collapse
Affiliation(s)
- Edward Kurnia Setiawan Limijadi
- Doctoral Study Program of Medical and Health Science, Universitas Diponegoro, Semarang, Indonesia
- Faculty of Medicine, Department of Clinical Pathology, Universitas Diopnegoro, Semarang, Indonesia
| | - Muflihatul Muniroh
- Faculty of Medicine, Department of Physiology, Universitas Diponegoro, Semarang, Indonesia
| | - Yan Wisnu Prajoko
- Faculty of Medicine, Department of Surgical Oncology, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Kevin Christian Tjandra
- Kariadi General Hospital, Semarang, Indonesia
- Faculty of Medicine, Departement of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Danendra Rakha Putra Respati
- Kariadi General Hospital, Semarang, Indonesia
- Faculty of Medicine, Departement of Medicine, Universitas Diponegoro, Semarang, Indonesia
| |
Collapse
|
11
|
Carroll RA, Rice ES, Murphy WJ, Lyons LA, Thibaud-Nissen F, Coghill LM, Swanson WF, Terio KA, Boyd T, Warren WC. A chromosome-scale fishing cat reference genome for the evaluation of potential germline risk variants. Sci Rep 2024; 14:8073. [PMID: 38580653 PMCID: PMC10997796 DOI: 10.1038/s41598-024-56003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024] Open
Abstract
The fishing cat, Prionailurus viverrinus, faces a population decline, increasing the importance of maintaining healthy zoo populations. Unfortunately, zoo-managed individuals currently face a high prevalence of transitional cell carcinoma (TCC), a form of bladder cancer. To investigate the genetics of inherited diseases among captive fishing cats, we present a chromosome-scale assembly, generate the pedigree of the zoo-managed population, reaffirm the close genetic relationship with the Asian leopard cat (Prionailurus bengalensis), and identify 7.4 million single nucleotide variants (SNVs) and 23,432 structural variants (SVs) from whole genome sequencing (WGS) data of healthy and TCC cats. Only BRCA2 was found to have a high recurrent number of missense mutations in fishing cats diagnosed with TCC when compared to inherited human cancer risk variants. These new fishing cat genomic resources will aid conservation efforts to improve their genetic fitness and enhance the comparative study of feline genomes.
Collapse
Affiliation(s)
- Rachel A Carroll
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA
| | - Edward S Rice
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A and M University, College Station, TX, 77843-4458, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Lyndon M Coghill
- Bioinformatics and Analytics Core, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA
| | - William F Swanson
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, 3400 Vine St., Cincinnati, OH, 45220, USA
| | - Karen A Terio
- Zoological Pathology Program, University of Illinois, 3300 Golf Rd, Brookfield, IL, 60513, USA
| | - Tyler Boyd
- Oklahoma City Zoo and Botanical Garden, 2000 Remington Pl., Oklahoma, OK, 73111, USA
| | - Wesley C Warren
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA.
- Department of Surgery, Bond Life Sciences Center, Institute of Data Science and Informatics, University of Missouri, 1201 Rollins St., Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
Toledo B, Deiana C, Scianò F, Brandi G, Marchal JA, Perán M, Giovannetti E. Treatment resistance in pancreatic and biliary tract cancer: molecular and clinical pharmacology perspectives. Expert Rev Clin Pharmacol 2024; 17:323-347. [PMID: 38413373 DOI: 10.1080/17512433.2024.2319340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Treatment resistance poses a significant obstacle in oncology, especially in biliary tract cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major focus of research: strategies being explored include combination therapies, modulation of the tumor microenvironment, and personalized approaches. AREAS COVERED We provide a current overview and discussion of the most relevant mechanisms of resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we compare the different strategies that are being implemented to overcome these obstacles. EXPERT OPINION So far there is no unified theory on drug resistance and progress is limited. To overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide effective treatment strategies. Furthermore, we provide insights into what we consider the most promising areas of research, and we speculate on the future of managing treatment resistance to improve patient outcomes.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Lumobiotics GmbH, Karlsruhe, Germany
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Brozos-Vázquez E, Toledano-Fonseca M, Costa-Fraga N, García-Ortiz MV, Díaz-Lagares Á, Rodríguez-Ariza A, Aranda E, López-López R. Pancreatic cancer biomarkers: A pathway to advance in personalized treatment selection. Cancer Treat Rev 2024; 125:102719. [PMID: 38490088 DOI: 10.1016/j.ctrv.2024.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Pancreatic cancer is one of the tumors with the worst prognosis, and unlike other cancers, few advances have been made in recent years. The only curative option is surgery, but only 15-20% of patients are candidates, with a high risk of relapse. In advanced pancreatic cancer there are few first-line treatment options and no validated biomarkers for better treatment selection. The development of targeted therapies in pancreatic cancer is increasingly feasible due to tumor-agnostic treatments, such as PARP inhibitors in patients with BRCA1, BRCA2 or PALB2 alterations or immunotherapies in patients with high microsatellite instability/tumor mutational burden. In addition, other therapeutic molecules have been developed for patients with KRAS G12C mutation or fusions in NTRK or NRG1. Consequently, there has been a growing interest in biomarkers that may help guide targeted therapy in pancreatic cancer. Therefore, this review aims to offer an updated perspective on biomarkers with therapeutic potential in pancreatic cancer.
Collapse
Affiliation(s)
- Elena Brozos-Vázquez
- Medical Oncology Department, University Hospital of A Coruña (CHUAC), A Coruña, Spain
| | - Marta Toledano-Fonseca
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET); Clinical University Hospital & Health Research Institute of Santiago de Compostela. CIBERONC; University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Victoria García-Ortiz
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ángel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET); Clinical University Hospital & Health Research Institute of Santiago de Compostela. CIBERONC; Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Antonio Rodríguez-Ariza
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Enrique Aranda
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Rafael López-López
- Clinical University Hospital & Health Research Institute of Santiago de Compostela. CIBERONC; Medical Oncology Department & Translational Medical Oncology Group-ONCOMET, Spain; Oncology at Santiago de Compostela School of Medicine, Spain
| |
Collapse
|
14
|
Koukaki T, Balgkouranidou I, Biziota E, Karayiannakis A, Bolanaki H, Karamitrousis E, Zarogoulidis P, Deftereos S, Charalampidis C, Ioannidis A, Matthaios D, Amarantidis K, Kakolyris S. Prognostic significance of BRCA1 and BRCA2 methylation status in circulating cell-free DNA of Pancreatic Cancer patients. J Cancer 2024; 15:2573-2579. [PMID: 38577595 PMCID: PMC10988318 DOI: 10.7150/jca.93184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Pancreatic cancer is the most fatal cancer type in the world. Its high mortality is mostly correlated to the absence of symptoms and the difficulty in early diagnosis, which in the majority of the cases occurs when the disease has already spread metastasis. Nowadays, tests that could predict early diagnosis are not available yet and the number of prognostic tests is limited. Hence, there is an urgent need for biomarkers capable of detecting early development or the rapid progression of the disease. Patients and Methods: DNA methylation represents the most frequent epigenetic event among tumor suppressor genes that are involved in various carcinogenic pathways. In the recent study we have tried to evaluate, for the first time, the prognostic value of BRCA1 and BRCA2 methylation in the cell-free DNA of pancreatic cancer patients. Using methylation-specific real-time PCR we examined the methylation status of BRCA1 and BRCA2 in 55 patients with operable and 50 patients with metastatic pancreatic cancer. In the operable disease setting, BRCA1 was found to be methylated in 33/55 (63.5%) patients examined while BRCA2 was also highly methylated in 31/55 (56.3%). In the metastatic disease, BRCA1 was found to be methylated in 26/50 (52%) while BRCA2 was found methylated in 23/50 (46%). Results: All control samples were negative for BRCA1 orBRCA2 promoter methylation. Patients with operable pancreatic cancer and a methylated BRCA1 and BRCA2 promoter status had a statistically significant poorer outcome as compared with patients with a non-methylated one (p=0.012 and p=0.001, respectively). Conclusion: In this study plasma methylation of BRCA1 and BRCA2 represents a frequent event in both the operable as well as in the metastatic setting. BRCA1 and BRCA2 methylation was significant and correlated with decreased survival in patients with operable pancreatic cancer. A larger cohort of patients is required to further explore the potential of these findings as well as to investigate whether BRCA1/2 methylation in plasma could serve as a potential prognostic biomarker in pancreatic cancer.
Collapse
Affiliation(s)
- Triantafyllia Koukaki
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | - Ioanna Balgkouranidou
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | - Eirini Biziota
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | | | - Helen Bolanaki
- Department of 2nd Surgery, Medical School, Democritus University of Thrace, Greece
| | - Evangelos Karamitrousis
- University Medical Oncology department, Aristotle University of Thessaloniki, Papageorgiou General Hospital
| | - Paul Zarogoulidis
- Pulmonary Oncology Department, General Clinic Euromedica, Thessaloniki, Greece
| | - Savas Deftereos
- Radiology Department, Medical School, Democritus University of Thrace, Greece
| | | | - Aris Ioannidis
- Surgery Department, Genesis Private Clinic, Thessaloniki, Greece
| | | | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | - Stylianos Kakolyris
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| |
Collapse
|
15
|
Szentmartoni G, Mühl D, Csanda R, Szasz AM, Herold Z, Dank M. Predictive Value and Therapeutic Significance of Somatic BRCA Mutation in Solid Tumors. Biomedicines 2024; 12:593. [PMID: 38540206 PMCID: PMC10967875 DOI: 10.3390/biomedicines12030593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/11/2025] Open
Abstract
Ten percent of patients with breast cancer, and probably somewhat more in patients with ovarian cancer, have inherited germline DNA mutations in the breast and ovarian cancer genes BRCA1 and BRCA2. In the remaining cases, the disease is caused by acquired somatic genetic and epigenetic alterations. Targeted therapeutic agents, such as poly ADP-ribose polymerases (PARP) inhibitors (PARPi), have emerged in treating cancers associated with germline BRCA mutations since 2014. The first PARPi was FDA-approved initially for ovarian cancer patients with germline BRCA mutations. Deleterious variants in the BRCA1/BRCA2 genes and homologous recombination deficiency status have been strong predictors of response to PARPi in a few solid tumors since then. However, the relevance of somatic BRCA mutations is less clear. Somatic BRCA-mutated tumors might also respond to this new class of therapeutics. Although the related literature is often controversial, recently published case reports and/or randomized studies demonstrated the effectiveness of PARPi in treating patients with somatic BRCA mutations. The aim of this review is to summarize the predictive role of somatic BRCA mutations and to provide further assistance for clinicians with the identification of patients who could potentially benefit from PARPi.
Collapse
Affiliation(s)
- Gyongyver Szentmartoni
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Agnihotri N, Ambavane A, Fan L, Li W, Yoo H, Joo S, Muston D. Modeling health outcomes associated with BRCA testing and treatment strategies for patients with metastatic pancreatic cancer. Pancreatology 2024; 24:271-278. [PMID: 38286712 DOI: 10.1016/j.pan.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Germline BRCA mutations (gBRCAm) occur in 4%-8% patients with metastatic pancreatic cancer (mPC); guidelines recommend platinum-based chemotherapies and olaparib maintenance in this population. We evaluated, through modeling, the role of treatments and gBRCA testing on health outcomes of mPC patients. METHODS A decision tree/partitioned survival model was developed to assess lifetime health outcomes for four strategies: 1) no testing; 2) early testing/no olaparib maintenance; 3) early testing (i.e., before 1L treatment)/olaparib maintenance; and 4) late testing/olaparib maintenance. Treatment patterns were assumed to follow current practice in the United States. Overall survival and progression-free survival curves were extrapolated from pivotal trials, including POLO trial for outcomes from olaparib maintenance after at least 16 weeks of platinum-based chemotherapy. RESULTS Among patients with gBRCAm, almost twice as many patients received platinum-based regimens in strategies involving early testing compared to when early testing was not employed (78.7 % vs 40.2 %). Health outcomes were highest in the strategy with early testing and available olaparib treatment whether considering progression-free life years (PF LYs, 1.27 vs 0.55-0.87), LYs (1.82 vs 0.95-1.27) or quality adjusted life years (QALYs, 1.15 vs 0.73-0.92 for others). Consistent patterns of results were observed in the overall cohort of mPC patients (i.e., irrespective of gBRCAm). CONCLUSION Patients with mPC achieved longest health outcomes (as measured by mean PF LYs, LYs and QALYs) with a scenario of early gBRCA testing and availability of olaparib maintenance. The results were primarily driven by improved health outcomes associated with higher efficacy of platinum-based chemotherapies and olaparib used in gBRCAm patients.
Collapse
Affiliation(s)
| | | | - Lin Fan
- Merck & Co., Inc, Rahway, NJ, USA
| | | | | | | | | |
Collapse
|
17
|
Zhang L, Zhai BZ, Wu YJ, Wang Y. Recent progress in the development of nanomaterials targeting multiple cancer metabolic pathways: a review of mechanistic approaches for cancer treatment. Drug Deliv 2023; 30:1-18. [PMID: 36597205 PMCID: PMC9943254 DOI: 10.1080/10717544.2022.2144541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer is a very heterogeneous disease, and uncontrolled cell division is the main characteristic of cancer. Cancerous cells need a high nutrition intake to enable aberrant growth and survival. To do so, cancer cells modify metabolic pathways to produce energy and anabolic precursors and preserve redox balance. Due to the importance of metabolic pathways in tumor growth and malignant transformation, metabolic pathways have also been given promising perspectives for cancer treatment, providing more effective treatment strategies, and target-specific with minimum side effects. Metabolism-based therapeutic nanomaterials for targeted cancer treatment are a promising option. Numerous types of nanoparticles (NPs) are employed in the research and analysis of various cancer therapies. The current review focuses on cutting-edge strategies and current cancer therapy methods based on nanomaterials that target various cancer metabolisms. Additionally, it highlighted the primacy of NPs-based cancer therapies over traditional ones, the challenges, and the future potential.
Collapse
Affiliation(s)
- Ling Zhang
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China,CONTACT Ling Zhang Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou310014, Zhejiang, China
| | - Bing-Zhong Zhai
- Hangzhou Municipal Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310021, China
| | - Yue-Jin Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China,; Yin Wang Institute of Food Science and Engineering, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou310013, Zhejiang, China
| |
Collapse
|
18
|
Militello AM, Orsi G, Cavaliere A, Niger M, Avallone A, Salvatore L, Tortora G, Rapposelli IG, Giordano G, Noventa S, Giommoni E, Bozzarelli S, Macchini M, Peretti U, Procaccio L, Puccini A, Cascinu S, Montagna C, Milella M, Reni M. Clinical outcomes and response to chemotherapy in a cohort of pancreatic cancer patients with germline variants of unknown significance (VUS) in BRCA1 and BRCA2 genes. Cancer Chemother Pharmacol 2023; 92:501-510. [PMID: 37725113 DOI: 10.1007/s00280-023-04585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE The clinical outcome and the efficacy of chemotherapy in pancreatic cancer patients with BRCA1/2 Variants of Unknown Significance (VUS) is unknown. We explored the effects of chemotherapy with or without Platinum in non metastatic and metastatic pancreatic cancer patients with BRCA1/2 VUS. METHODS A retrospective analysis of non-metastatic or metastatic pancreatic cancer patients with gBRCA1/2 VUS treated in 13 Italian centers between November 2015 and December 2020 was performed. All patients were assessed for toxicity and RECIST 1.1 response. Metastatic patients were evaluated for survival outcome. RESULTS 30 pancreatic cancer patients with gBRCA1/2 VUS were considered: 20 were M+ and 10 were non-M+. Pl-CT was recommended to 16 patients: 10 M+ (6 FOLFIRINOX and 4 PAXG) and 6 non-M+ (3 FOLFIRINOX and 3 PAXG); 11 patients received Nabpaclitaxel-Gemcitabine (AG; 8 M+) and 3 patients (2 M+) were treated with Gemcitabine (G). The RECIST 1.1 response rate was 27% for AG and 44% for Pl-CT (22% for (m) FOLFIRINOX and 71% PAXG). 1 year Progression-Free Survival was 37.5% for patients treated with AG and 33% in the Pl-CT subgroup. Median Overall Survival (OS) was 23.5 months for patients treated with AG and 14 months for the Pl-CT subgroup. 1 Year and 2 Year OS were numerically better for AG (1 Year OS: 75% vs 60% and 2 Year OS: 50% and 20% in AG and Pl-CT subgroups, respectively) as well. CONCLUSIONS Pl-CT does not seem to be associated with a better outcome compared to AG chemotherapy in PDAC patients with BRCA 1/2 VUS.
Collapse
Affiliation(s)
- Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cavaliere
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS Candiolo, Candiolo, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Antonio Avallone
- Biologia Cellulare e Bioterapie, Istituto Nazionale per lo Studio e la Cura dei Tumori ''Fondazione Giovanni Pascale'' - IRCCS, Naples, Italy
| | - Lisa Salvatore
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ''Dino Amadori'', Meldola, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa Giommoni
- Medical Oncology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Silvia Bozzarelli
- Department of Medical Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Procaccio
- Medical Oncology 1 Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Alberto Puccini
- University of Genoa, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Montagna
- Department of Radiation Oncology and Genomic Instability and Cancer Genetics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy.
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
19
|
Farncombe KM, Wong D, Norman ML, Oldfield LE, Sobotka JA, Basik M, Bombard Y, Carile V, Dawson L, Foulkes WD, Malkin D, Karsan A, Parkin P, Penney LS, Pollett A, Schrader KA, Pugh TJ, Kim RH. Current and new frontiers in hereditary cancer surveillance: Opportunities for liquid biopsy. Am J Hum Genet 2023; 110:1616-1627. [PMID: 37802042 PMCID: PMC10577078 DOI: 10.1016/j.ajhg.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023] Open
Abstract
At least 5% of cancer diagnoses are attributed to a causal pathogenic or likely pathogenic germline genetic variant (hereditary cancer syndrome-HCS). These individuals are burdened with lifelong surveillance monitoring organs for a wide spectrum of cancers. This is associated with substantial uncertainty and anxiety in the time between screening tests and while the individuals are awaiting results. Cell-free DNA (cfDNA) sequencing has recently shown potential as a non-invasive strategy for monitoring cancer. There is an opportunity for high-yield cancer early detection in HCS. To assess clinical validity of cfDNA in individuals with HCS, representatives from eight genetics centers from across Canada founded the CHARM (cfDNA in Hereditary and High-Risk Malignancies) Consortium in 2017. In this perspective, we discuss operationalization of this consortium and early data emerging from the most common and well-characterized HCSs: hereditary breast and ovarian cancer, Lynch syndrome, Li-Fraumeni syndrome, and Neurofibromatosis type 1. We identify opportunities for the incorporation of cfDNA sequencing into surveillance protocols; these opportunities are backed by examples of earlier cancer detection efficacy in HCSs from the CHARM Consortium. We seek to establish a paradigm shift in early cancer surveillance in individuals with HCSs, away from highly centralized, regimented medical screening visits and toward more accessible, frequent, and proactive care for these high-risk individuals.
Collapse
Affiliation(s)
- Kirsten M Farncombe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Derek Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Maia L Norman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Leslie E Oldfield
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Julia A Sobotka
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark Basik
- Department of Surgery, McGill University Medical School, Montreal, QC, Canada; Department of Oncology, McGill University Medical School, Montreal, QC, Canada
| | - Yvonne Bombard
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Victoria Carile
- Jewish General Hospital Stroll Cancer Prevention Centre, Montreal, QC, Canada
| | - Lesa Dawson
- Memorial University, St. John's, NL, Canada; Eastern Health Authority, St. John's, NL, Canada
| | - William D Foulkes
- Jewish General Hospital Stroll Cancer Prevention Centre, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Malkin
- Division of Hematology-Oncology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Patricia Parkin
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Division of Pediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Kasmintan A Schrader
- BC Cancer, Vancouver, BC, Canada; University of British Columbia, Vancouver, BC, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Raymond H Kim
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Sinai Health System, Toronto, ON, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Phan Z, Ford CE, Caldon CE. DNA repair biomarkers to guide usage of combined PARP inhibitors and chemotherapy: A meta-analysis and systematic review. Pharmacol Res 2023; 196:106927. [PMID: 37717683 DOI: 10.1016/j.phrs.2023.106927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE The addition of PARP inhibitors to chemotherapy has been assessed in > 80 clinical trials across multiple malignancies, on the premise that PARP inhibitors will increase chemotherapy effectiveness regardless of whether cancers have underlying disruption of DNA repair pathways. Consequently, the majority of combination therapy trials have been performed on patients without biomarker selection, despite the use of homologous recombination deficiency to dictate use of PARP inhibitors in the maintenance setting. An unresolved question is whether biomarkers are needed to identify patients who respond to combination PARP inhibitors and chemotherapy. METHODS A systematic literature review identified studies using PARP inhibitors in combination with chemotherapy versus chemotherapy alone, where the study included a biomarker of DNA repair function (BRCA1, BRCA2, homologous recombination deficiency test, ATM, ERCC1, SLFN11). Hazard ratios (HR) were pooled in a meta-analysis using generic inverse-variance, and fixed or random effects modelling. Subgroup analyses were conducted on biomarker selection and type of malignancy. RESULTS Nine studies comprising 2547 patients met the inclusion criteria. Progression-free survival (PFS) was significantly better in patients with a DNA repair biomarker (HR: 0.57, 95% CI: 0.48-0.68, p < 0.00001), but there was no benefit in patients who lacked a biomarker (HR: 0.94, 95% CI: 0.82-1.08, p = 0.38). Subgroup analysis showed that BRCA status and SLFN11 biomarkers could predict benefit, and biomarker-driven benefit occurred in ovarian, breast and small cell lung cancers. The addition of PARP inhibitors to chemotherapy was associated with increased grade 3/4 side effects, and particularly neutropenia. CONCLUSIONS Combination therapy only improves PFS in patients with identifiable DNA repair biomarkers. This indicates that PARP inhibitors do not sensitise patients to chemotherapy treatment, except where their cancer has a homologous recombination defect, or an alternative biomarker of altered DNA repair. While effective in patients with DNA repair biomarkers, there is a risk of high-grade haematological side-effects with the use of combination therapy. Thus, the benefit in PFS from combination therapy must be weighed against potential adverse effects, as individual arms of treatment can also confer benefit.
Collapse
Affiliation(s)
- Zoe Phan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Caroline E Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
21
|
Hitchen N, Waldron NR, Deva S, Findlay M, Lawrence B. Real-world outcomes of cisplatin, capecitabine, and gemcitabine with either epirubicin (PEXG) or docetaxel (PDXG) as first-line palliative treatment in metastatic or unresectable locally advanced pancreatic adenocarcinoma. Asia Pac J Clin Oncol 2023; 19:e231-e238. [PMID: 36114593 DOI: 10.1111/ajco.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND First-line palliative chemotherapy regimens in advanced pancreatic adenocarcinoma include triplet chemotherapy with 5-fluorouracil, oxaliplatin, and irinotecan, and the doublet of nab-paclitaxel plus gemcitabine. Use of triplet chemotherapy in real-world populations is limited by tolerability and nab-paclitaxel is not universally available. Regimens using the combination of cisplatin, capecitabine, gemcitabine, and either epirubicin or docetaxel may be better tolerated, more widely available, and similarly effective, but no published real-world data exist. METHODS A retrospective cohort review of patients with metastatic or unresectable locally advanced pancreatic adenocarcinoma treated with first-line palliative cisplatin, capecitabine, gemcitabine, and either epirubicin or docetaxel chemotherapy at Auckland City Hospital between July 1, 2013 and July 30, 2020. The primary outcome was overall survival (OS). Secondary outcomes were rates of grade 3 or 4 hematological toxicity, rate of febrile neutropenia, number of cycles received, and reasons for discontinuation. RESULTS Eighty-eight patients were included. Median age was 66 years (range 39-79), 28.4% had unresectable, locally advanced disease and 71.6% metastatic disease. Median OS was 8.5 months. Patients stopped treatment due to disease progression (53.4%), completing 12 cycles (19.3%), or toxicity (10.2%). Grade 4 neutropenia was experienced by 21.6%; 10.2% had febrile neutropenia. There were four treatment-related deaths. CONCLUSION This retrospective study in a real-world population demonstrates that chemotherapy with cisplatin, capecitabine, and gemcitabine with epirubicin (PEXG) or docetaxel (PDXG) had similar effectiveness to more commonly used combination regimens. PDXG/PEXG are viable alternatives to nab-paclitaxel plus gemcitabine in countries that have restricted drug funding.
Collapse
Affiliation(s)
- Nadia Hitchen
- Medical Oncology Department, Auckland City Hospital, Auckland, New Zealand
- The University of Auckland, Auckland, New Zealand
| | - Nick R Waldron
- Medical Oncology Department, Auckland City Hospital, Auckland, New Zealand
| | - Sanjeev Deva
- Medical Oncology Department, Auckland City Hospital, Auckland, New Zealand
- The University of Auckland, Auckland, New Zealand
| | - Michael Findlay
- Medical Oncology Department, Auckland City Hospital, Auckland, New Zealand
- The University of Auckland, Auckland, New Zealand
| | - Benjamin Lawrence
- Medical Oncology Department, Auckland City Hospital, Auckland, New Zealand
- The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Doha ZO, Sears RC. Unraveling MYC's Role in Orchestrating Tumor Intrinsic and Tumor Microenvironment Interactions Driving Tumorigenesis and Drug Resistance. PATHOPHYSIOLOGY 2023; 30:400-419. [PMID: 37755397 PMCID: PMC10537413 DOI: 10.3390/pathophysiology30030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The transcription factor MYC plays a pivotal role in regulating various cellular processes and has been implicated in tumorigenesis across multiple cancer types. MYC has emerged as a master regulator governing tumor intrinsic and tumor microenvironment interactions, supporting tumor progression and driving drug resistance. This review paper aims to provide an overview and discussion of the intricate mechanisms through which MYC influences tumorigenesis and therapeutic resistance in cancer. We delve into the signaling pathways and molecular networks orchestrated by MYC in the context of tumor intrinsic characteristics, such as proliferation, replication stress and DNA repair. Furthermore, we explore the impact of MYC on the tumor microenvironment, including immune evasion, angiogenesis and cancer-associated fibroblast remodeling. Understanding MYC's multifaceted role in driving drug resistance and tumor progression is crucial for developing targeted therapies and combination treatments that may effectively combat this devastating disease. Through an analysis of the current literature, this review's goal is to shed light on the complexities of MYC-driven oncogenesis and its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Zinab O. Doha
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Medical Laboratories Technology, Taibah University, Al-Madinah 42353, Saudi Arabia
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
23
|
Sadeghi Moghadam M, Azimian H, Tavakol Afshari J, Bahreyni Toossi MT, Kaffash Farkhad N, Aghaee-Bakhtiari SH. Chromosomal Instability in Various Generations of Human Mesenchymal Stem Cells Following the Therapeutic Radiation. Stem Cells Int 2023; 2023:9991656. [PMID: 37674788 PMCID: PMC10480024 DOI: 10.1155/2023/9991656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 09/08/2023] Open
Abstract
Background Radiotherapy is a crucial treatment for most malignancies. However, it can cause several side effects, including the development of secondary malignancies due to radiation-induced genomic instability (RIGI). The aim of this study was to evaluate genomic instability in human mesenchymal stem cells (hMSCs) at different X-ray radiation doses. Additionally, the study aimed to examine the relative expression of certain genes involved in DNA repair, proto-oncogenes, and tumor suppressor genes. Methods After extracting, characterizing, and expanding hMSCs, they were exposed to X-ray beams at doses of 0, 0.5, 2, and 6 Gy. Nuclear alterations were evaluated through the cytokinesis-block micronucleus (CBMN) assay at 2, 10, and 15 days postirradiation. The expressions of BRCA1, BRCA2, TP53, Bax, Bcl2, and KRAS genes were analyzed 48 hr after irradiation to evaluate genomic responses to different radiation doses. Results The mean incidence of micronuclei, nucleoplasmic bridges, and nuclear buds was 4.8 ± 1.6, 47.6 ± 6, and 18 ± 2.6, respectively, in the nonirradiated group 48 hr after the fourth passage, per 1,000 binucleated cells. The incidence of micronuclei in groups exposed to 0.5, 2, and 6 Gy of radiation was 14.3 ± 4.9, 32.3 ± 6.5, and 55 ± 9.1, respectively, 48 hr after irradiation. The expression levels of the BRCA2, Bax, TP53, and KRAS genes significantly increased after exposure to 6 Gy radiation compared to the control groups. However, there was no significant increase in BRCA1 and Bcl2 gene expression in our study. Conclusion This study demonstrated significant nuclear alterations in the 10 days postirradiation due to the RIGIs that they inherited from their irradiated ancestral cells. While chromosomal instability is a prevalent event in malignant cells, so it seems necessary to optimize radiotherapy treatment protocols for tissues that contain stem cells, especially with IMRT, which delivers a low dose to a larger volume of tissues.
Collapse
Affiliation(s)
- Majid Sadeghi Moghadam
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
24
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
25
|
Glover MJ, Bien J, Chen CT. Toward Precision Perioperative Therapy in GI Malignancies. JCO Precis Oncol 2023; 7:e2200381. [PMID: 37625103 DOI: 10.1200/po.22.00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 08/27/2023] Open
Abstract
PURPOSE The term precision oncology typically refers to molecularly guided therapies against cancer. Less appreciated but also critically important is molecular identification of patients with resectable disease who are most likely to benefit from perioperative drugs, and tailored selection of such drugs. We call this idea precision perioperative therapy. Over the past several years, use of precision perioperative approaches for patients with localized GI cancers has expanded in clinical trials and practice. Here, we summarize the status of the field and highlight areas of future innovation. METHODS Using PubMed, we reviewed articles published from 2017 to 2023 in English. We used search terms "adjuvant," "perioperative," "neoadjuvant," and "precision medicine" for various types of GI malignancies. Information about ongoing clinical trials was accessed through ClinicalTrials.gov, accessed January 2023. RESULTS Paradigms such as minimal residual disease detection via circulating tumor DNA and perioperative immunotherapy in lieu of chemotherapy for mismatch repair-deficient disease may lead to reduced toxicity and improved long-term outcomes in select populations. Molecularly targeted drugs that have shown activity against metastatic disease may also hold promise in the curable setting. CONCLUSION The field is very much in development, but emerging data demonstrate early promise. We are optimistic that ongoing research efforts will increasingly bring precision perioperative therapy to patients with resectable GI malignancies.
Collapse
Affiliation(s)
| | - Jeffrey Bien
- Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
26
|
Ciurea AM, Schenker M, Ciofiac CM, Streba L, Schenker R, Streba CT. Genomic Profiling - A Need for Clinical Decision? -Case Reports. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:467-473. [PMID: 38314216 PMCID: PMC10832885 DOI: 10.12865/chsj.49.03.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/21/2023] [Indexed: 02/06/2024]
Abstract
Cancer is still an important health issue worldwide due to increased incidence and mortality. Personalized medicine is the future of cancer treatment. Development in technology improved technical skills in DNA/RNA sequencing. NGS technology in solid-tumor samples can describe DNA or RNA analysis by including the entire genome to detect clinical relevant mutations. Genetic results may be considered having a dynamic impact because of heterogenous molecular alterations depending of time and treatment influence. We conducted a retrospective study of all NGS tests made in the last five years for the patients from 'Sf. Nectarie' Oncology Center, Craiova, Romania. We selected three relevant clinical cases where NGS analysis was performed and the results changed the perspective of the clinical decision. Our aim is to evaluate the importance of NGS results in clinical approach. Although medicine known an important development during the last decades, only a few patients can benefit of advanced personalized treatments. It is still hard to identify the alterations or gene mutations because of genetic tests are not easily available and only a small proportion of patients carries genetic alterations.
Collapse
Affiliation(s)
- Ana-Maria Ciurea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristina Mihaela Ciofiac
- Doctoral School, Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova
| | - Liliana Streba
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ramona Schenker
- Psychology Department, Sf Nectarie Oncology Center, Craiova, Romania
| | - Costin Teodor Streba
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
27
|
YANG HONG, LI WAN, REN LIWEN, YANG YIHUI, ZHANG YIZHI, GE BINBIN, LI SHA, ZHENG XIANGJIN, LIU JINYI, ZHANG SEN, DU GUANHUA, TANG BO, WANG HONGQUAN, WANG JINHUA. Progress on diagnostic and prognostic markers of pancreatic cancer. Oncol Res 2023; 31:83-99. [PMID: 37304241 PMCID: PMC10208033 DOI: 10.32604/or.2023.028905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic cancer is a malignant disease characterized by low survival and high recurrence rate, whose patients are mostly at the stage of locally advanced or metastatic disease when first diagnosed. Early diagnosis is particularly important because prognostic/predictive markers help guide optimal individualized treatment regimens. So far, CA19-9 is the only biomarker for pancreatic cancer approved by the FDA, but its effectiveness is limited by low sensitivity and specificity. With recent advances in genomics, proteomics, metabolomics, and other analytical and sequencing technologies, the rapid acquisition and screening of biomarkers is now possible. Liquid biopsy also occupies a significant place due to its unique advantages. In this review, we systematically describe and evaluate the available biomarkers that have the greatest potential as vital tools in diagnosing and treating pancreatic cancer.
Collapse
Affiliation(s)
- HONG YANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - WAN LI
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - LIWEN REN
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - YIHUI YANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - YIZHI ZHANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - BINBIN GE
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - SHA LI
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - XIANGJIN ZHENG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - JINYI LIU
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - SEN ZHANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - GUANHUA DU
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - BO TANG
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - HONGQUAN WANG
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - JINHUA WANG
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
28
|
Zampiga V, Cangini I, Bandini E, Azzali I, Ravegnani M, Ravaioli A, Mancini S, Tebaldi M, Tedaldi G, Pirini F, Veneroni L, Frassineti GL, Falcini F, Danesi R, Calistri D, Arcangeli V. Prevalence of a BRCA2 Pathogenic Variant in Hereditary-Breast-and-Ovarian-Cancer-Syndrome Families with Increased Risk of Pancreatic Cancer in a Restricted Italian Area. Cancers (Basel) 2023; 15:cancers15072132. [PMID: 37046793 PMCID: PMC10093547 DOI: 10.3390/cancers15072132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
PVs and LPVs in BRCA1/2 genes are correlated to a high risk of developing breast cancer and/or ovarian cancer (Hereditary Breast and Ovarian Cancer syndrome, HBOC); additionally, in recent years, an increasing number of BRCA 1/2 variants have been identified and associated with pancreatic cancer. Epidemiologic studies have highlighted that inherited factors are involved in 10% to 20% of PCs, mainly through deleterious variants of BRCA2. The frequency of BRCA1/2 germline alterations fluctuates quite a lot among different ethnic groups, and the estimated rate of PVs/LPVs variants in Italian HBOC families is not very accurate, according to different reports. The aim of our study is to describe the prevalence of a BRCA2 PV observed in a selected cohort of HBOC patients and their relatives, whose common origin is the eastern coast of Emilia Romagna, a region of Italy. This study provides insight into the frequency of the variant detected in this area and provides evidence of an increased risk of pancreatic and breast cancer, useful for genetic counseling and surveillance programs.
Collapse
Affiliation(s)
- Valentina Zampiga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ilaria Cangini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Erika Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Irene Azzali
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Mila Ravegnani
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandra Ravaioli
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Silvia Mancini
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Gianluca Tedaldi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Luigi Veneroni
- Surgical Department, Infermi Hospital, 47923 Rimini, Italy
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Fabio Falcini
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Rita Danesi
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Daniele Calistri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Valentina Arcangeli
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
29
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
30
|
Zannini G, Facchini G, De Sio M, De Vita F, Ronchi A, Orditura M, Vietri MT, Ciardiello F, Franco R, Accardo M, Zito Marino F. Implementation of BRCA mutations testing in formalin-fixed paraffin-embedded (FFPE) samples of different cancer types. Pathol Res Pract 2023; 243:154336. [PMID: 36736144 DOI: 10.1016/j.prp.2023.154336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
BRCA1 and BRCA2 are onco-suppressor genes involved in the DNA repair mechanism. The presence of BRCA1/2 mutations confers a higher risk of developing several cancer types. To date, the FDA approved various PARP inhibitors to treat selected BRCA1/2 mutated oncologic patients. At first, PARP inhibitors were approved for patients with ovarian and breast cancers, and subsequently for metastatic pancreatic adenocarcinoma and metastatic castration-resistant prostate cancer after the treatment with chemotherapy. The current guidelines for BRCA testing are very heterogeneous between the different types of tumors regarding the diagnostic algorithm and the type of sample to analyze, such as the blood for the germline mutations and the tumoral tissue for the somatic mutations. Few data have currently been described regarding the detection of BRCA1/2 somatic mutations in formalin-fixed paraffin-embedded (FFPE) samples. In this review, we propose an overview of the BRCA mutations in FFPE samples of several cancers, including breast, ovarian, fallopian tube, primary peritoneal, prostate, and pancreatic cancer. We summarize the types and the frequency of BRCA mutations, the guidelines approved for the test, the molecular assays used for the detection and the PARP inhibitors approved for each tumor type.
Collapse
Affiliation(s)
- Giuseppa Zannini
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Gaetano Facchini
- Medical Oncology Unit, SM delle Grazie Hospital, Via Domitiana, Pozzuoli 80078, Italy.
| | - Marco De Sio
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Maria Teresa Vietri
- U.O.C. Clinical and Molecular Pathology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples 80138, Italy.
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| |
Collapse
|
31
|
Copur MS, Tun SM, Vargas L, Merani S, Wedel W, Duckert R, Horn A, Lintel N, Herold D, Lavudi S. Unusual dMMR Phenotype Locally Advanced Pancreatic Ductal Adenocarcinoma with Germline and Somatic BRCA2 Mutation in a Jehovah Witness Patient. Clin Colorectal Cancer 2023; 22:160-165. [PMID: 36404245 DOI: 10.1016/j.clcc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mehmet Sitki Copur
- Mary Lanning Healthcare, Morrison Cancer Center, Hastings, NE; University of Nebraska Medical Center, Omaha, NE.
| | - Soe Min Tun
- Mary Lanning Healthcare, Morrison Cancer Center, Hastings, NE
| | | | | | | | - Randy Duckert
- Mary Lanning Healthcare, Morrison Cancer Center, Hastings, NE
| | - Adam Horn
- Mary Lanning Healthcare Pathology, Hastings, NE
| | | | | | - Swathi Lavudi
- Prairie Center Internal Medicine & Nephrology, Green Island, NE
| |
Collapse
|
32
|
Lansbergen MF, Khelil M, Etten-Jamaludin FSV, Bijlsma MF, van Laarhoven HWM. Poor-prognosis molecular subtypes in adenocarcinomas of pancreato-biliary and gynecological origin: A systematic review. Crit Rev Oncol Hematol 2023; 185:103982. [PMID: 37004743 DOI: 10.1016/j.critrevonc.2023.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Pancreato-biliary and gynecological adenocarcinomas need better tools to predict clinical outcome. Potential prognostic mesenchymal(-like) transcriptome-based subtypes have been identified in these cancers. In this systematic review, we include studies into molecular subtyping and summarize biological and clinical features of the subtypes within and across sites of origin, searching for suggestions to improve classification and prognostication. PubMed and Embase were searched for original research articles describing potential mesenchymal(-like) mRNA-based subtypes in pancreato-biliary or gynecological adenocarcinomas. Studies limited to supervised clustering were excluded. Fourty-four studies, discussing cholangiocarcinomas, gallbladder, ampullary, pancreatic, ovarian, and endometrial adenocarcinomas were included. There was overlap in molecular and clinical features in mesenchymal(-like) subtypes across all adenocarcinomas. Approaches including microdissection were more likely to identify prognosis-associating subtypes. To conclude, molecular subtypes in pancreato-biliary and gynecological adenocarcinomas share biological and clinical characteristics. Furthermore, separation of stromal and epithelial signals should be applied in future studies into biliary and gynecological adenocarcinomas.
Collapse
Affiliation(s)
- Marjolein F Lansbergen
- Amsterdam UMC location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Center for Experimental Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands.
| | - Maryam Khelil
- University of Amsterdam, Spui 21, 1012 WX Amsterdam, the Netherlands
| | - Faridi S van Etten-Jamaludin
- Amsterdam UMC location University of Amsterdam, Research Support Medical Library, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
33
|
Molnar A, Monroe H, Basri Aydin H, Arslan ME, Lightle A, Lee H, El Jabbour T. Tumors of the Digestive System: Comprehensive Review of Ancillary Testing and Biomarkers in the Era of Precision Medicine. Curr Oncol 2023; 30:2388-2404. [PMID: 36826143 PMCID: PMC9954843 DOI: 10.3390/curroncol30020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Immunotherapy has remained at the vanguard of promising cancer therapeutic regimens due to its exceptionally high specificity for tumor cells and potential for significantly improved treatment-associated quality of life compared to other therapeutic approaches such as surgery and chemoradiation. This is especially true in the digestive system, where high rates of mutation give rise to a host of targetable tumor-specific antigens. Many patients, however, do not exhibit measurable improvements under immunotherapy due to intrinsic or acquired resistance, making predictive biomarkers necessary to determine which patients will benefit from this line of treatment. Many of these biomarkers are assessed empirically by pathologists according to nuanced scoring criteria and algorithms. This review serves to inform clinicians and pathologists of extant and promising upcoming biomarkers predictive of immunotherapeutic efficacy among digestive system malignancies and the ancillary testing required for interpretation by pathologists according to tumor site of origin.
Collapse
Affiliation(s)
- Attila Molnar
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA
| | - Hunter Monroe
- Department of Pathology, West Virginia University, Morgantown, WV 26506, USA
| | - Hasan Basri Aydin
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Mustafa Erdem Arslan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Lightle
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Tony El Jabbour
- Department of Pathology, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
34
|
Peng J, Madduri S, Clontz AD, Stewart DA. Clinical trial-identified inflammatory biomarkers in breast and pancreatic cancers. Front Endocrinol (Lausanne) 2023; 14:1106520. [PMID: 37181043 PMCID: PMC10173309 DOI: 10.3389/fendo.2023.1106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Breast cancer and pancreatic cancer are two common cancer types characterized by high prevalence and high mortality rates, respectively. However, breast cancer has been more well-studied than pancreatic cancer. This narrative review curated inflammation-associated biomarkers from clinical studies that were systematically selected for both breast and pancreatic cancers and discusses some of the common and unique elements between the two endocrine-regulated malignant diseases. Finding common ground between the two cancer types and specifically analyzing breast cancer study results, we hoped to explore potential feasible methods and biomarkers that may be useful also in diagnosing and treating pancreatic cancer. A PubMed MEDLINE search was used to identify articles that were published between 2015-2022 of different kinds of clinical trials that measured immune-modulatory biomarkers and biomarker changes of inflammation defined in diagnosis and treatment of breast cancer and pancreatic cancer patients. A total of 105 papers (pancreatic cancer 23, breast cancer 82) were input into Covidence for the title and abstract screening. The final number of articles included in this review was 73 (pancreatic cancer 19, breast cancer 54). The results showed some of the frequently cited inflammatory biomarkers for breast and pancreatic cancers included IL-6, IL-8, CCL2, CD8+ T cells and VEGF. Regarding unique markers, CA15-3 and TNF-alpha were two of several breast cancer-specific, and CA19 and IL-18 were pancreatic cancer-specific. Moreover, we discussed leptin and MMPs as emerging biomarker targets with potential use for managing pancreatic cancer based on breast cancer studies in the future, based on inflammatory mechanisms. Overall, the similarity in how both types of cancers respond to or result in further disruptive inflammatory signaling, and that point to a list of markers that have been shown useful in diagnosis and/or treatment method response or efficacy in managing breast cancer could potentially provide insights into developing the same or more useful diagnostic and treatment measurement inflammatory biomarkers for pancreatic cancer. More research is needed to investigate the relationship and associated inflammatory markers between the similar immune-associated biological mechanisms that contribute to breast and pancreatic cancer etiology, drive disease progression or that impact treatment response and reflect survival outcomes.
Collapse
Affiliation(s)
- Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep Madduri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Angela D. Clontz
- Department of Nutrition, Meredith College, Raleigh, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- *Correspondence: Delisha A. Stewart,
| |
Collapse
|
35
|
Herzog TJ, Vergote I, Gomella LG, Milenkova T, French T, Tonikian R, Poehlein C, Hussain M. Testing for homologous recombination repair or homologous recombination deficiency for poly (ADP-ribose) polymerase inhibitors: A current perspective. Eur J Cancer 2023; 179:136-146. [PMID: 36563604 DOI: 10.1016/j.ejca.2022.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) have demonstrated clinical activity in patients with BRCA1 and/or BRCA2 mutated breast, ovarian, prostate, and pancreatic cancers. Notably, BRCA mutations are associated with defects in the homologous recombination repair (HRR) pathway. This homologous recombination deficiency (HRD) phenotype can also be observed as genomic instability in tumour cells. Accordingly, PARPi sensitivity has been observed in various tumours with HRD, independent of BRCA mutations. Currently, four PARPis are approved by regulatory agencies for the treatment of cancer across multiple tumour types. Most indications are specific to tumours with a confirmed BRCA mutation, mutations in other HRR-related genes, HRD evidenced by genomic instability, or evidence of platinum sensitivity. Regulatory agencies have also approved companion and complementary diagnostics to facilitate patient selection for each PARPi indication. This review aims to summarise the biological basis, clinical validation, and clinical relevance of the available diagnostic methods and assays to assess HRD.
Collapse
Affiliation(s)
- Thomas J Herzog
- University of Cincinnati Cancer Center, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45219, USA.
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Leuven Cancer Institute, Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium, European Union
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center-Jefferson University Health, 1025 Walnut St Suite 1100, Philadelphia, PA 19107, USA
| | | | - Tim French
- AstraZeneca, 316 Hills Rd, Cambridge CB2 8PA, UK
| | - Raffi Tonikian
- Merck & Co., Inc., 90 E Scott Ave, Rahway, NJ 07065, USA
| | | | - Maha Hussain
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 420 E Superior St, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Pancreatic Cancer: Beyond Brca Mutations. J Pers Med 2022; 12:jpm12122076. [PMID: 36556296 PMCID: PMC9787452 DOI: 10.3390/jpm12122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths worldwide. The outcomes in patients with pancreatic cancer remain unsatisfactory. In the current review, we summarize the genetic and epigenetic architecture of metastatic pancreatic cancer beyond the BRCA mutations, focusing on the genetic alterations and the molecular pathology in pancreatic cancer. This review focuses on the molecular targets for the treatment of pancreatic cancer, with a correlation to future treatments. The potential approach addressed in this review may lead to the identification of a subset of patients with specific biological behaviors and treatment responses.
Collapse
|
37
|
Negri S, De Ponti E, Sina FP, Sala E, Dell'Oro C, Roversi G, Lazzarin S, Delle Marchette M, Inzoli A, Toso C, Fumagalli S, Campanella M, Kotsopoulos J, Fruscio R. Evaluation of family history in individuals with heterozygous BRCA pathogenic variants diagnosed with breast or ovarian cancer in a single center in Italy. Mol Genet Genomic Med 2022; 10:e2071. [PMID: 36307994 PMCID: PMC9747548 DOI: 10.1002/mgg3.2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND BRCA1 and BRCA2 gene mutations are responsible for 5% of breast cancer (BC) and 10-15% of ovarian cancer (EOC). The presence of a germline mutation and therefore the identification of subjects at high risk of developing cancer should ideally precede the onset of the disease, so that appropriate surveillance and risk-reducing treatments can be proposed. In this study, we revisited the family history (FH) of women who tested positive for BRCA mutations after being diagnosed with BC or EOC. METHODS The National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology (NCCN Guidelines®), and the Italian Association of Medical Oncology (AIOM) guidelines were applied to the FH of 157 women who were referred to San Gerardo Hospital for genetic counseling. RESULTS Almost 85% of women had an FH of BRCA-related cancer. 63.7% and 52.2% of women could have undergone genetic testing according to NCCN and AIOM testing criteria (p < .05) before tumor diagnosis. An FH of EOC was the most frequent NCCN criterion, followed by BC diagnosed <45 years old. Sixty-five percent of deceased women could have undergone genetic testing before developing cancer. CONCLUSIONS FH is a powerful tool to identify high-risk individuals eligible for genetic counseling and testing. Testing of healthy individuals should be considered when an appropriately affected family member is unavailable for testing.
Collapse
Affiliation(s)
- Serena Negri
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Elena De Ponti
- Department of Physical Medicine, ASST Monza, San Gerardo Hospital, Monza, Italy
| | | | - Elena Sala
- UO Medical Genetics, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Cristina Dell'Oro
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Gaia Roversi
- UO Medical Genetics, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Sara Lazzarin
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Martina Delle Marchette
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Alesssandra Inzoli
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Claudia Toso
- UOC Gestione Sanitaria delle Convenzioni, ATS Brianza, Lecco, Italy
| | - Simona Fumagalli
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.,UOC Gynecologic Surgery, ASST Monza, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
38
|
Abstract
Breast cancer susceptibility gene 2 (BRCA2) is the main gene associated with hereditary breast cancers. However, a mutation in BRCA2 has also been found in other tumors, such as ovarian, pancreatic, thyroid, gastric, laryngeal, and prostate cancers. In this review, we discuss the biological functions of BRCA2 and the role of BRCA2 mutations in tumor progression and therapy.
Collapse
Affiliation(s)
- Chunbao Xie
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangrong Luo
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yangjun He
- Department of Medical Laboratory, Southwest Medical University, Luzhou, China
| | - Lingxi Jiang
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ling Zhong and Yi Shi, 32, West Section 2, 1st Ring Road, Chengdu, Sichuan 610072, China (e-mails: and )
| | - Yi Shi
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Ling Zhong and Yi Shi, 32, West Section 2, 1st Ring Road, Chengdu, Sichuan 610072, China (e-mails: and )
| |
Collapse
|
39
|
Quiñonero F, Mesas C, Muñoz-Gámez JA, Jiménez-Luna C, Perazzoli G, Prados J, Melguizo C, Ortiz R. PARP1 inhibition by Olaparib reduces the lethality of pancreatic cancer cells and increases their sensitivity to Gemcitabine. Biomed Pharmacother 2022; 155:113669. [PMID: 36113257 DOI: 10.1016/j.biopha.2022.113669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) is one of the tumors with the lowest survival rates due to the poor efficacy of the treatments currently used. Gemcitabine (GMZ), one of the chemotherapeutic agents employed when the tumor is unresectable, frequently fails due to the development of drug resistance. PARP1 is a relevant protein in this phenomenon and appears to be related to cancer progression in several types of tumors, including PC. To determine the relevance of PARP1 in the development and treatment of PC, we used the Panc02 cell line to generate modified PC cells with stably inhibited PARP1 expression (Panc02-L) and used GMZ, Olaparib (OLA) and GMZ+OLA as therapeutic strategies. Viability, radiosensitization, angiogenesis, migration, colony formation, TUNEL, cell cycle, multicellular tumorsphere induction and in vivo assays were performed to test the influence of PARP1 inhibition on resistance phenomena and tumor progression. We demonstrated that stable inhibition or pharmacological blockade of PARP1 using OLA-sensitized Panc02 cells against GMZ significantly decreased their IC50, reducing colony formation capacity, cell migration and vessel formation (angiogenesis) in vitro. Furthermore, in vivo analyses revealed that Panc02-L-derived (PARP1-inhibited) tumors showed less growth and lethality, and that GMZ+OLA treatment significantly reduced tumor growth. In conclusion, PARP1 inhibition, both alone and in combination with GMZ, enhances the effectiveness of this chemotherapeutic agent and represents a promising strategy for the treatment of PC.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Jose A Muñoz-Gámez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), Granada 18014, Spain
| |
Collapse
|
40
|
Gillson J, Abd El-Aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers (Basel) 2022; 14:3528. [PMID: 35884592 PMCID: PMC9315706 DOI: 10.3390/cancers14143528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.
Collapse
Affiliation(s)
- Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Jaswinder S. Samra
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, Sydney, NSW 2010, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
41
|
The Emerging Role of EVA1A in Different Types of Cancers. Int J Mol Sci 2022; 23:ijms23126665. [PMID: 35743108 PMCID: PMC9224241 DOI: 10.3390/ijms23126665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 12/06/2022] Open
Abstract
Eva-1 homolog A (EVA1A), also known as transmembrane protein 166 (TMEM166) and regulator of programmed cell death, is an endoplasmic reticulum associated protein, which can play an important role in many diseases, including a variety of cancers, by regulating autophagy/apoptosis. However, the related mechanism, especially the role of EVA1A in cancers, has not been fully understood. In this review, we summarize the recent studies on the role of EVA1A in different types of cancers, including breast cancer, papillary thyroid cancer, non-small cell lung cancer, hepatocellular carcinoma, glioblastoma and pancreatic cancer, and analyze the relevant mechanisms to provide a theoretical basis for future related research.
Collapse
|
42
|
Insights into the Possible Molecular Mechanisms of Resistance to PARP Inhibitors. Cancers (Basel) 2022; 14:cancers14112804. [PMID: 35681784 PMCID: PMC9179506 DOI: 10.3390/cancers14112804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increasingly wide use of PARP inhibitors in breast, ovarian, pancreatic, and prostate cancers harbouring a pathogenic variant in BRCA1 or BRCA2 has highlighted the problem of resistance to therapy. This review summarises the complex interactions between PARP1, cell cycle regulation, response to stress replication, homologous recombination, and other DNA damage repair pathways in the setting of BRCA1/2 mutated cancers that could explain the development of primary or secondary resistance to PARP inhibitors. Abstract PARP1 enzyme plays an important role in DNA damage recognition and signalling. PARP inhibitors are approved in breast, ovarian, pancreatic, and prostate cancers harbouring a pathogenic variant in BRCA1 or BRCA2, where PARP1 inhibition results mainly in synthetic lethality in cells with impaired homologous recombination. However, the increasingly wide use of PARP inhibitors in clinical practice has highlighted the problem of resistance to therapy. Several different mechanisms of resistance have been proposed, although only the acquisition of secondary mutations in BRCA1/2 has been clinically proved. The aim of this review is to outline the key molecular findings that could explain the development of primary or secondary resistance to PARP inhibitors, analysing the complex interactions between PARP1, cell cycle regulation, PI3K/AKT signalling, response to stress replication, homologous recombination, and other DNA damage repair pathways in the setting of BRCA1/2 mutated cancers.
Collapse
|
43
|
Devico Marciano N, Kroening G, Dayyani F, Zell JA, Lee FC, Cho M, Valerin JG. BRCA-Mutated Pancreatic Cancer: From Discovery to Novel Treatment Paradigms. Cancers (Basel) 2022; 14:cancers14102453. [PMID: 35626055 PMCID: PMC9140002 DOI: 10.3390/cancers14102453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Approximately 10–20% of pancreatic cancer patients will have a mutation in their DNA, passed on in families, that contributes to the development of their pancreatic cancer. These mutations are important in that they effect the biology of the disease as well as contribute to sensitivity to specific treatments. We describe the critical role that these genes play in various cellular processes in the body that contribute to their role in cancer development and normal cellular function. In this review, we aim to describe the role of certain genes (BRCA1 and BRCA2) in the development of pancreatic cancer and the current and future research efforts underway to treat this subtype of disease. Abstract The discovery of BRCA1 and BRCA2 in the 1990s revolutionized the way we research and treat breast, ovarian, and pancreatic cancers. In the case of pancreatic cancers, germline mutations occur in about 10–20% of patients, with mutations in BRCA1 and BRCA2 being the most common. BRCA genes are critical in DNA repair pathways, particularly in homologous recombination, which has a serious impact on genomic stability and can contribute to cancerous cell proliferation. However, BRCA1 also plays a fundamental role in cell cycle checkpoint control, ubiquitination, control of gene expression, and chromatin remodeling, while BRCA2 also plays a role in transcription and immune system response. Therefore, mutations in these genes lead to multiple defects in cells that may be utilized when treating cancer. BRCA mutations seem to confer a prognostic benefit with an improved overall survival due to differing underlying biology. These mutations also appear to be a predictive marker, with patients showing increased sensitivity to certain treatments, such as platinum chemotherapy and PARP inhibitors. Olaparib is currently indicated for maintenance therapy in metastatic PDAC after induction with platinum-based chemotherapy. Resistance has been found to these therapies, and with a 10.8% five-year OS, novel therapies are desperately needed.
Collapse
|
44
|
Comparative Panel Sequencing of DNA Variants in cf-, ev- and tumorDNA for Pancreatic Ductal Adenocarcinoma Patients. Cancers (Basel) 2022; 14:cancers14041074. [PMID: 35205822 PMCID: PMC8870073 DOI: 10.3390/cancers14041074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. To improve treatment, personalized medicine uses next-generation DNA sequencing to monitor disease and guide treatment decisions. Tumor samples for sequencing are usually obtained by invasive fine-needle biopsy. Recently, the focus has been increasingly shifting to blood-based liquid biopsies, including circulating free (cf)DNA or DNA isolated from extracellular vesicles (evDNA). To evaluate the detection performance of DNA alterations, we directly compared tumor-, cf- and evDNA from patients with advanced PDAC upon panel sequencing. Copy number variations (CNVs), single nucleotide variants (SNVs) and insertions and deletions (indels) were compared for their concordance with tumorDNA. Compared to cfDNA, evDNA contained significantly larger DNA fragments, which improved the concordance of SNVs and indels with tumorDNA. In line with previous observations, CNV detection was mostly uninformative for cf- and evDNA. However, the combination of both liquid biopsy analytes was clearly superior for SNV detection, pointing to potentially improved actionable variant prediction. Abstract Pancreatic ductal adenocarcinomas (PDACs) are tumors with poor prognosis and limited treatment options. Personalized medicine aims at characterizing actionable DNA variants by next-generation sequencing, thereby improving treatment strategies and outcomes. Fine-needle tumor biopsies are currently the gold standard to acquire samples for DNA profiling. However, liquid biopsies have considerable advantages as they are minimally invasive and frequently obtainable and thus may help to monitor tumor evolution over time. However, which liquid analyte works best for this purpose is currently unclear. Our study aims to directly compare tumor-, circulating free (cf-) and extracellular vesicle-derived (ev)DNA by panel sequencing of matching patient material. We evaluated copy number variations (CNVs), single nucleotide variants (SNVs) and insertions and deletions (indels). Our data show that evDNA contains significantly larger DNA fragments up to 5.5 kb, in line with previous observations. Stringent bioinformatic processing revealed a significant advantage of evDNA with respect to cfDNA concerning detection performance for SNVs and a numerical increase for indels. A combination of ev- and cfDNA was clearly superior for SNV detection, as compared to either single analyte, thus potentially improving actionable variant prediction upon further optimization. Finally, calling of CNVs from liquid biopsies still remained challenging and uninformative.
Collapse
|
45
|
Vietri MT, D’Elia G, Caliendo G, Albanese L, Signoriello G, Napoli C, Molinari AM. Pancreatic Cancer with Mutation in BRCA1/2, MLH1, and APC Genes: Phenotype Correlation and Detection of a Novel Germline BRCA2 Mutation. Genes (Basel) 2022; 13:321. [PMID: 35205366 PMCID: PMC8872383 DOI: 10.3390/genes13020321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer death worldwide; most of cases are sporadic, however about 5% to 10% report a hereditary predisposition. Several hereditary syndromes have been associated with familial pancreatic cancer (FPC) onset, including hereditary breast and ovarian cancer syndrome (HBOC), Lynch syndrome (LS), Familial atypical multiple mole melanoma (FAMMM), Familial adenomatous polyposis (FAP), Li-Fraumeni syndrome (LFS), Peutz-Jeghers syndrome (PJS), and Hereditary pancreatitis (HP).The aim of this study was to determine the mutational status of a cohort of 56 HBOC families, 7 LS families, 3 FAP and FAMMM families, and 1 LFS family with at least one case of PDAC. Mutation analysis of BRCA1/2, ATM, CHEK2, PALB2, RAD51C, RAD51D, NBN, CDH1, TP53, MLH1, MSH2, MSH6, and PMS2 genes, showedmutation in BRCA1/2, MLH1, and APC genes. We founda high mutation rate in patients belong HBOC and LS families, with a percentage of 28.6% in both syndromes and prevalence in HBOC of BRCA2 mutations with one case of double mutation in BRCA2 gene. In FAP family, we found a pathogenic mutation in APC gene in 1/3 families. We observed an early onset of PDAC and a lower survival in PDAC patients belonging to mutated families, while no evidence of possible pancreatic cancer cluster regions was found. Moreover, we identified a novel BRCA2 germline mutation, c.5511delT (p.Phe1837LeufsX3), not reported in any database, that segregated with disease in HBOC patients. Mutational analysis was extended to family membersof mutated patients, both healthy and cancer affected, which revealed 23 unaffected family members that inherited the proband's mutation. Although correlative by its nature, the presence of a BRCA mutation in PDAC patients may have benefits in terms of optimized treatment and longer outcome.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giovanna D’Elia
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giuseppe Signoriello
- Statistical Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Clinical Department of Internal Medicine and Specialistic Units, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| |
Collapse
|
46
|
Ali SM, Adnan Y, Ahmad Z, Farooqui HA, Chawla T, Ali SMA. Genetic landscape of pancreatic adenocarcinoma patients: a pilot study from Pakistan. Mol Biol Rep 2022; 49:1341-1350. [PMID: 34812998 DOI: 10.1007/s11033-021-06964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pancreatic adenocarcinoma is one of the most aggressive malignancies with extremely low survival rate. Studies have shown that the exploration of key genes can provide a basis for targeted treatment of these patients. The genomic architecture of the Pakistani pancreatic adenocarcinoma patients remains unexplored. Keeping the scenario in place, the current study aims to analyse 88 cancer related genes in Pakistani pancreatic adenocarcinoma patients in order to elucidate candidate gene(s) for targeted molecular therapy. METHODS AND RESULTS A total 18 patients were included in the study initially and FFPE tumor samples were obtained. After confirmation of diagnosis and appropriate tumor content, DNA was extracted. Based on the quality and quantity of the extracted DNA, six pancreatic adenocarcinoma tumor samples were selected. Following to this, all the samples were subjected to targeted sequencing (Axen Cancer Panel 1). Variant detection was done and clinical significance of identified variants was assessed using ClinVar database. Targeted sequencing of tumor samples revealed a total of 29 alterations in the coding region of various genes. Among these five pathogenic variants were found in KRAS, BRCA1, TP53 and APC genes. CONCLUSION This is the first study that explores genes involved in pancreatic adenocarcinoma from the Pakistani population. Results obtained from the pilot study can guide us about the key genetic players in the Pakistani pancreatic adenocarcinoma population. This can lead to our better understanding of the molecular targeted therapies for these patients and designing future researches on larger sample size.
Collapse
Affiliation(s)
| | - Yumna Adnan
- Aga Khan University Hospital, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
47
|
Huang J, Chen Z, Ding C, Lin S, Wan D, Ren K. Prognostic Biomarkers and Immunotherapeutic Targets Among CXC Chemokines in Pancreatic Adenocarcinoma. Front Oncol 2021; 11:711402. [PMID: 34497764 PMCID: PMC8419473 DOI: 10.3389/fonc.2021.711402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Background Pancreatic cancer is one of the principal causes of tumor-related death worldwide. CXC chemokines, a subfamily of functional chemotactic peptides, affect the initiation of tumor cells and clinical outcomes in several human malignant tumors. However, the specific biological functions and clinical significance of CXC chemokines in pancreatic cancer have not been clarified. Methods Bioinformatics analysis tools and databases, including ONCOMINE, GEPIA2, the Human Protein Atlas, DAVID, GeneMANIA, cBioPortal, STRING, DGidb, MethSurv, TRRUST, SurvExpress, SurvivalMeth, and TIMER, were utilized to clarify the clinical significance and biological functions of CXC chemokine in pancreatic cancer. Results Except for CXCL11/12, the transcriptional levels of other CXC chemokines in PAAD tissues were significantly elevated, and the expression level of CXCL16 was the highest among these CXC chemokines. Our findings also suggested that all of the CXC chemokines were linked to tumor-immune dysfunction involving the abundance of immune cell infiltration, and the Cox proportional hazard model confirmed that dendritic and CXCL3/5/7/8/11/17 were significantly associated with the clinical outcome of PAAD patients. Furthermore, increasing expressions of CXCL5/9/10/11/17 were related to unfavorable overall survival (OS), and only CXCL17 was a prognostic factor for disease-free survival (DFS) in PAAD patients. The expression pattern and prognostic power of CXC chemokines were further validated in the independent GSE62452 dataset. For the prognostic value of single CpG of DNA methylation of CXC chemokines in patients with PAAD, we identified 3 CpGs of CXCL1, 2 CpGs of CXCL2, 2 CpGs of CXCL3, 3 CpGs of CXCL4, 10 CpGs of CXCL5, 1 CpG of CXCL6, 1 CpG of CXCL7, 3 CpGs of CXCL12, 3 CpGs of CXCL14, and 5 CpGs of CXCL17 that were significantly associated with prognosis in PAAD patients. Moreover, the prognostic value of CXC chemokine signature in PAAD was explored and tested in two independent cohort, and results indicated that the patients in the low-risk group had a better OS compared with the high-risk group. Survival analysis of the DNA methylation of CXC chemokine signature demonstrated that PAAD patients in the high-risk group had longer survival times. Conclusions These findings reveal the novel insights into CXC chemokine expression and their biological functions in the pancreatic cancers, which might serve as accurate prognostic biomarkers and suitable immunotherapeutic targets for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jiacheng Huang
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhitao Chen
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenchen Ding
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Shengzhang Lin
- Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Dalong Wan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kuiwu Ren
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Fuyang People's Hospital, Fuyang, China
| |
Collapse
|
48
|
Sekine M, Nishino K, Enomoto T. Differences in Ovarian and Other Cancers Risks by Population and BRCA Mutation Location. Genes (Basel) 2021; 12:genes12071050. [PMID: 34356066 PMCID: PMC8303997 DOI: 10.3390/genes12071050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hereditary breast and ovarian cancer is caused by a germline mutation in BRCA1 or BRCA2 genes. The frequency of germline BRCA1/2 gene mutation carriers and the ratio of germline BRCA1 to BRCA2 mutations in BRCA-related cancer patients vary depending on the population. Genotype and phenotype correlations have been reported in BRCA mutant families, however, the correlations are rarely used for individual risk assessment and management. BRCA genetic testing has become a companion diagnostic for PARP inhibitors, and the number of families with germline BRCA mutation identified is growing rapidly. Therefore, it is expected that analysis of the risk of developing cancer will be possible in a large number of BRCA mutant carriers, and there is a possibility that personal and precision medicine for the carriers with specific common founder mutations will be realized. In this review, we investigated the association of ovarian cancer risk and BRCA mutation location, and differences of other BRCA-related cancer risks by BRCA1/2 mutation, and furthermore, we discussed the difference in the prevalence of germline BRCA mutation in ovarian cancer patients. As a result, although there are various discussions, there appear to be differences in ovarian cancer risk by population and BRCA mutation location. If it becomes possible to estimate the risk of developing BRCA-related cancer for each BRCA mutation type, the age at risk-reducing salpingo-oophorectomy can be determined individually. The decision would bring great benefits to young women with germline BRCA mutations.
Collapse
Affiliation(s)
- Masayuki Sekine
- Correspondence: ; Tel.: +81-25-227-2320; Fax: +81-25-227-0789
| | | | | |
Collapse
|