1
|
Li O, An K, Wang H, Li X, Wang Y, Huang L, Du Y, Qin N, Dong J, Wei J, Sun R, Shi Y, Guo Y, Sun X, Yang Y, Yang YG, Kan Q, Tian X. Targeting YBX1-m5C mediates RNF115 mRNA circularisation and translation to enhance vulnerability of ferroptosis in hepatocellular carcinoma. Clin Transl Med 2025; 15:e70270. [PMID: 40088428 PMCID: PMC11910144 DOI: 10.1002/ctm2.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND RNA 5-methylcytosine (m5C) plays an important role in the progression of hepatocellular carcinoma (HCC). Dysregulation of ferroptosis is closely associated with HCC. However, the effect of the epigenetic mRNA m5C modification on ferroptosis in HCC remains unclear. METHODS In this study, ferroptosis was evaluated by detecting lipid reactive oxygen species (lipid ROS), ferrous ion and 4-hydroxynonenal (4-HNE) in xenograft mouse model, diethylnitrosamine (DEN)-initiated HCC model and so forth. The regulatory mechanisms of YBX1 in mRNA translation were elucidated using RNA sequencing, ribosome sequencing, RNA immunoprecipitation (RIP)-sequencing, bisulphite sequencing and immunoprecipitation (IP)-mass spectrometry assays. Dual-luciferase reporter, RIP-qPCR, Co-IP, RNA pulldown and methylated RNA immunoprecipitation (MeRIP)-quantitative polymerase chain reaction (qPCR) assays were performed to validate the mechanism of YBX1 in regulating mRNA translation by m5C modification. RESULTS Here, we found that YBX1 promoted the translation of Ring Finger Protein 115 (RNF115) mRNA through m5C modification, thereby inhibiting ferroptosis and promoting HCC development. Moreover, RNF115 was identified as an E3 ubiquitin ligase for dihydroorotate dehydrogenase (DHODH), promoting Lys27 (K27) ubiquitination and inhibiting its autophagic degradation to counteract ferroptosis. In addition, YBX1 bound to the m5C modification sites of RNF115 3'-untranslated region (UTR) and interacted with Eukaryotic Translation Initiation Factor 4A1 (EIF4A1) to bridge the 5'-UTR regions, promoting mRNA circularisation and translation, while NOP2/Sun RNA methyltransferase 2 (NSUN2) was identified as responsible for m5C modification of RNF115 mRNA in HCC. CONCLUSIONS The current work revealed that YBX1 promoted RNF115 mRNA translation in an m5C-dependent manner, thereby regulating DHODH ubiquitination and expression to suppress ferroptosis. This research sheds light on the mechanism of YBX1 in m5C-modified mRNAs translation and ferroptosis, highlighting its promise as a biomarker for prognosis and a target for therapy in HCC. KEY POINTS YBX1 inhibits ferroptosis in HCC by regulating the RNF115-DHODH axis. RNF115, an E3 ligase, mediates K27 ubiquitination and autophagic degradation of DHODH. YBX1 binds to the m5C sites of RNF115 mRNA 3'-UTR and interacts with EIF4A1 to bridge the 5'-UTR, promoting mRNA circularisation and translation. High expression of YBX1/RNF115 predicts the poor overall survival in HCC.
Collapse
Affiliation(s)
- Ouwen Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xianbin Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Nuo Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jiasheng Dong
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yanjia Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiangyi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Wang Y, Cao Y, Wang Y, Sun J, Wang L, Song X, Zhao X. Construction and analysis of protein-protein interaction network for esophageal squamous cell carcinoma. Comput Biol Med 2024; 182:109156. [PMID: 39276610 DOI: 10.1016/j.compbiomed.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive tract. Clinical findings reveal that the five-year survival rate for mid-to late-stage ESCC patients is merely around 20 %, whereas those diagnosed at an early stage can achieve up to a 95 % survival rate. Consequently, early detection is paramount to improving ESCC patient survival. Protein markers are essential for diagnosing diseases, and the identification of new candidate proteins associated with ESCC through the protein-protein interaction (PPI) network is aimed for in this paper. The PPI network related to ESCC was constructed using protein data, comprising 2094 nodes and 19,660 edges. To assess the nodes' importance in the network, three metrics-degree centrality, betweenness centrality, and closeness centrality-were employed, leading to the identification of 81 key proteins. Subsequently, the biological significance of these proteins in the network was explored, combining biomedical knowledge from three perspectives: network, node, and cluster. The results demonstrated that 52 out of 81 key proteins were confirmed to be linked to ESCC. Among the remaining 29 unreported proteins, 18 displayed significant biological significance, indicating their potential as protein markers related to ESCC.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuhan Cao
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingcong Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Huang X, Wang M, Zhang D, Meng J, Liu P. ZDHHC20 Activates AKT Signaling Pathway to Promote Cell Proliferation in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1763-1775. [PMID: 39309302 PMCID: PMC11416782 DOI: 10.2147/jhc.s457682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background Liver cancer is the sixth most common cancer worldwide, and hepatocellular carcinoma (HCC) presents one of the most challenging global health issues. ZDHHC20, a member of the ZDHHC palmitoyltransferase (ZDHHC-PAT) family, is involved in a reversible lipid modification known as palmitoylation, which contributes to the occurrence and progression of various tumors. However, the specific mechanisms underlying the involvement of ZDHHC20 in this process are unclear. Methods The effects of both ZDHHC20 knockdown and overexpression on hepatocellular carcinoma cell proliferation were evaluated using PCR, Western blotting, CCK-8 assay, colony formation assay, cell cycle analysis, apoptosis analysis, and EDU assay. The TCGA-LIHC dataset was analyzed bioinformatically, and the phosphorylation level of PI3K and AKT in SK-Hep1 and Huh7 cells was assessed using Western blotting. Nude mouse subcutaneous xenograft experiments were conducted to evaluate the effects of different treatment conditions on mouse tumor growth. Results ZDHHC20 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression of ZDHHC20 promoted cell proliferation and inhibited apoptosis. Knockdown of ZDHHC20 also decreased phosphorylation of PI3K and AKT in HCC, whereas overexpression of ZDHHC20 increased phosphorylation of PI3K and AKT. The PI3K-AKT pathway inhibitors, LY294002 and MK2206, effectively inhibited the promotional effects of ZDHHC20 on the proliferation and growth of HCC. Conclusion High expression of ZDHHC20 promotes the proliferation and tumor growth of HCC by activating the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 and the AKT inhibitor MK2206 inhibit the promotional effects of ZDHHC20 on the proliferation of HCC and the growth of tumors.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of General Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Pian Liu
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
4
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
5
|
Zhang HY, Zhu JJ, Liu ZM, Zhang YX, Chen JJ, Chen KD. A prognostic four-gene signature and a therapeutic strategy for hepatocellular carcinoma: Construction and analysis of a circRNA-mediated competing endogenous RNA network. Hepatobiliary Pancreat Dis Int 2024; 23:272-287. [PMID: 37407412 DOI: 10.1016/j.hbpd.2023.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a poor long-term prognosis. The competition of circular RNAs (circRNAs) with endogenous RNA is a novel tool for predicting HCC prognosis. Based on the alterations of circRNA regulatory networks, the analysis of gene modules related to HCC is feasible. METHODS Multiple expression datasets and RNA element targeting prediction tools were used to construct a circRNA-microRNA-mRNA network in HCC. Gene function, pathway, and protein interaction analyses were performed for the differentially expressed genes (DEGs) in this regulatory network. In the protein-protein interaction network, hub genes were identified and subjected to regression analysis, producing an optimized four-gene signature for prognostic risk stratification in HCC patients. Anti-HCC drugs were excavated by assessing the DEGs between the low- and high-risk groups. A circRNA-microRNA-hub gene subnetwork was constructed, in which three hallmark genes, KIF4A, CCNA2, and PBK, were subjected to functional enrichment analysis. RESULTS A four-gene signature (KIF4A, CCNA2, PBK, and ZWINT) that effectively estimated the overall survival and aided in prognostic risk assessment in the The Cancer Genome Atlas (TCGA) cohort and International Cancer Genome Consortium (ICGC) cohort was developed. CDK inhibitors, PI3K inhibitors, HDAC inhibitors, and EGFR inhibitors were predicted as four potential mechanisms of drug action (MOA) in high-risk HCC patients. Subsequent analysis has revealed that PBK, CCNA2, and KIF4A play a crucial role in regulating the tumor microenvironment by promoting immune cell invasion, regulating microsatellite instability (MSI), and exerting an impact on HCC progression. CONCLUSIONS The present study highlights the role of the circRNA-related regulatory network, identifies a four-gene prognostic signature and biomarkers, and further identifies novel therapy for HCC.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jia-Jie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zong-Ming Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Xuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jia-Jia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ke-Da Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
6
|
Xing J, Tan R, Huang F, Tian N. Integrated analyses for identification of a three-gene signature associated with Chaihu Shugan San formula for hepatocellular carcinoma treatment. J Cell Mol Med 2024; 28:e18211. [PMID: 38613352 PMCID: PMC11015397 DOI: 10.1111/jcmm.18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Chaihu Shugan San (CSS) is a well-known traditional herbal formula that has the potential to ameliorate hepatocellular carcinoma (HCC); however, its mechanism of action remains unknown. Here, we identified the key targets of CSS against HCC and developed a prognostic model to predict the survival of patients with HCC. The effect of CSS plus sorafenib on HCC cell proliferation was evaluated using the MTT assay. LASSO-Cox regression was used to establish a three-gene signature model targeting CSS. Correlations between immune cells, immune checkpoints and risk score were determined to evaluate the immune-related effects of CSS. The interactions between the components and targets were validated using molecular docking and Surface Plasmon Resonance (SPR) assays. CSS and sorafenib synergistically inhibited HCC cell proliferation. Ten core compounds and 224 targets were identified using a drug compound-target network. The prognostic model of the three CSS targets (AKT1, MAPK3 and CASP3) showed predictive ability. Risk scores positively correlated with cancer-promoting immune cells and high expression of immune checkpoint proteins. Molecular docking and SPR analyses confirmed the strong binding affinities of the active components and the target genes. Western blot analysis confirmed the synergistic effect of CSS and sorafenib in inhibiting the expression of these three targets. In conclusion, CSS may regulate the activity of immune-related factors in the tumour microenvironment, reverse immune escape, enhance immune responses through AKT1, MAPK3, and CASP3, and synergistically alleviate HCC. The co-administration of sorafenib with CSS has a strong clinical outlook against HCC.
Collapse
Affiliation(s)
- Jia‐heng Xing
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Ru‐xue Tan
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Fei‐er Huang
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Nan Tian
- College of Life ScienceZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| |
Collapse
|
7
|
Liu T, Zhai C, Tian B, Li C, Han S, Wang S, Xuan M, Liu D, Zhao Y, Zhao H, Yu W, Wang J. Downregulation of Roundabout guidance receptor 2 suppresses hepatocellular carcinoma progression by interacting with Y-box binding protein 1. Sci Rep 2024; 14:2588. [PMID: 38297025 PMCID: PMC10830551 DOI: 10.1038/s41598-024-53013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Roundabout guidance receptor 2 (Robo2) is closely related to malignant tumors such as pancreatic cancer and liver fibrosis, but there is no relevant research on the role of Robo2 in HCC. The study will further explore the function and mechanism of Robo2 and its downstream target genes in HCC. Firstly, Robo2 protein levels in human HCC tissues and paired adjacent normal liver tissues were detected. Then we established HepG2 and Huh7 hepatoma cell lines with knock-down Robo2 by transfection with lentiviral vectors, and examined the occurrence of EMT, proliferation and apoptosis abilities in HCC cells by western blot, flow cytometry, wound healing assay and TUNEL staining. Then we verified the interaction between Robo2 and its target gene by Co-IP and immunofluorescence co-staining, and further explored the mechanism of Robo2 and YB-1 by rescue study. The protein expression level of Robo2 in HCC was considerably higher than that in the normal liver tissues. After successfully constructing hepatoma cells with knock-down Robo2, it was confirmed that down-regulated Robo2 suppressed EMT and proliferation of hepatoma cells, and accelerated the cell apoptosis. High-throughput sequencing and validation experiments verified that YB-1 was the downstream target gene of Robo2, and over-expression of YB-1 could reverse the apoptosis induced by Robo2 down-regulation and its inhibitory effect on EMT and proliferation. Robo2 deficiency inhibits EMT and proliferation of hepatoma cells and augments the cell apoptosis by regulating YB-1, thus inhibits the occurrence of HCC and provides a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Congjie Zhai
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Bo Tian
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Chao Li
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shuangshuang Han
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shihui Wang
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Mingda Xuan
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Dehua Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Yunxia Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Hongyan Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Weifang Yu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Jia Wang
- Department of Infectious Diseases, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
8
|
Yin Y, Wu C, Zhou Y, Zhang M, Mai S, Chen M, Wang HY. Ezetimibe Induces Paraptosis through Niemann-Pick C1-like 1 Inhibition of Mammalian-Target-of-Rapamycin Signaling in Hepatocellular Carcinoma Cells. Genes (Basel) 2023; 15:4. [PMID: 38275586 PMCID: PMC10815321 DOI: 10.3390/genes15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Currently, hepatocellular carcinoma (HCC) is characterized by its unfavorable prognosis and resistance to conventional chemotherapy and radiotherapy. Drug repositioning, an approach aimed at identifying novel therapeutic applications for existing drugs, presents a cost-effective strategy for developing new anticancer agents. We explored the anticancer properties of Ezetimibe, a widely used oral lipid-lowering drug, in the context of HCC. Our findings demonstrate that Ezetimibe effectively suppresses HCC cell proliferation through paraptosis, an apoptotic-independent cell death pathway. The examination of HCC cells lines treated with Ezetimibe using light microscopy and transmission electron microscopy (TEM) showed cytoplasmic vacuolation in the perinuclear region. Notably, the nuclear membrane remained intact in both Ezetimibe-treated and untreated HCC cell lines. Probe staining assays confirmed that the cytoplasmic vacuoles originated from dilated endoplasmic reticulum (ER) compartments rather than mitochondria. Furthermore, a dose-dependent accumulation of reactive oxygen species (ROS) was observed in Ezetimibe-treated HCC cell lines. Co-treatment with the general antioxidant NAC attenuated vacuolation and improved cell viability in Ezetimibe-treated HCC cells. Moreover, Ezetimibe induced paraptosis through proteasome activity inhibition and initiation of the unfolded protein response (UPR) in HCC cell lines. In our in vivo experiment, Ezetimibe significantly impeded the growth of HCC tumors. Furthermore, when combined with Sorafenib, Ezetimibe exhibited a synergistic antitumor effect on HCC cell lines. Mechanistically, Ezetimibe induced paraptosis by targeting NPC1L1 to inhibit the PI3K/AKT/mTOR signaling pathway. In conclusion, our study highlights the potential of Ezetimibe as an anticancer agent by triggering paraptosis in HCC cells.
Collapse
Affiliation(s)
- Yuting Yin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Chun Wu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yufeng Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Meiyin Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Shijuan Mai
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
9
|
Li X, Yin X, Bao H, Liu C. Circular RNA ITCH increases sorafenib-sensitivity in hepatocellular carcinoma via sequestering miR-20b-5p and modulating the downstream PTEN-PI3K/Akt pathway. Mol Cell Probes 2023; 67:101877. [PMID: 36442661 DOI: 10.1016/j.mcp.2022.101877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUNDS Sorafenib-resistance leads to poor prognosis and high mortality in advanced hepatocellular carcinoma (HCC), and this study aims to investigate the functional role of a circular RNA ITCH (circITCH) in regulating the sorafenib-resistance of HCC and its underlying mechanisms. METHODS The expression of circITCH in HCC tissues and cell lines were detected by performing quantitative real-time polymerase chain reaction. Sorafenib-resistant HCC cells were transfected with PLCDH-circITCH to upregulate circITCH and intervened with sorafenib, and MTT assay, flow cytometry and transwell assay were used to test the cell viability, apoptosis and migration ability, respectively. The downstream target of circITCH were explored by using bioinformatic analysis, dual luciferase reporter system and Western blot. RESULTS CircITCH was significantly down-regulated in HCC tissues and cell lines, compared with their normal counterparts. Especially, in contrast with the sorafenib-sensitive HCC cells, continuous sorafenib treatment decreased the expression levels of circITCH in the sorafenib-resistant HCC cells. Overexpression of circITCH increased sorafenib-sensitivity, promoted cell apoptosis and reduced cell migration abilities in the sorafenib-resistant HCC cells. Mechanically, circITCH elevated PTEN expression to inactivate the PI3K/Akt signals through negatively regulating miR-20b-5p in HCC, and upregulating miR-20b-5p or inhibiting PTEN abolished the enhancing effect of circITCH overexpression on sorafenib-induced cytotoxicity in sorafenib-resistant HCC cells. CONCLUSION Taken together, this study proves that circITCH enhances sorafenib-sensitivity in sorafenib-resistant HCC cells via regulating the miR-20b-5p/PTEN/PI3K/Akt signaling cascade, which highlights the potential value of circITCH as a target for enhancing the sorafenib-sensitivity in HCC.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Xuedong Yin
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Heyi Bao
- Department of General Surgery, Qiqihar First Hospital, Qiqihar, 161005, China.
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
10
|
Razpotnik R, Vidmar R, Fonović M, Rozman D, Režen T. Circular RNA hsa_circ_0062682 Binds to YBX1 and Promotes Oncogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4524. [PMID: 36139684 PMCID: PMC9497178 DOI: 10.3390/cancers14184524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of hepatocellular carcinoma (HCC). By implementing available transcriptomic analyses of HCC patients, we identified an upregulated circRNA hsa_circ_0062682. Stable perturbations of hsa_circ_0062682 in Huh-7 and SNU-449 cell lines influenced colony formation, migration, cell proliferation, sorafenib sensitivity, and additionally induced morphological changes in cell lines, indicating an important role of hsa_circ_0062682 in oncogenesis. Pathway enrichment analysis and gene set enrichment analysis of the transcriptome data from hsa_circ_0062682 knockdown explained the observed phenotypes and exposed transcription factors E2F1, Sp1, HIF-1α, and NFκB1 as potential downstream targets. Biotinylated oligonucleotide pulldown combined with proteomic analyses identified protein interaction partners of which YBX1, a known oncogene, was confirmed by RNA immunoprecipitation. Furthermore, we discovered a complex cell-type-specific phenotype in response to the oncogenic potential of hsa_circ_0062682. This finding is in line with different classes of HCC tumours, and more studies are needed to shed a light on the molecular complexity of liver cancer.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Ma Z, Zhu Y, Wang Q, Deng M, Wang J, Li D, Gu L, Zhao R, Yan S. Y-box binding protein 1 regulates liver lipid metabolism by regulating the Wnt/β-catenin signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1693. [PMID: 34988202 PMCID: PMC8667161 DOI: 10.21037/atm-21-5767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Background We mainly investigated how y-box binding protein 1 (YB-1) regulates liver lipid metabolism through the Wnt/β-catenin signaling pathway using multiple models. Methods The LO2 cells were treated with palmitic acid (PA) to create an NAFLD model in vitro. Immunohistochemistry and Western blotting assays were used to detect the expression of YB-1, β-catenin, SREBP-1c, LXRa, FXR1 and PPARα protein, and RNAs of them was detected by qRT-PCR. Oil Red O assay was applied to observe lipid droplets in LO2 cells and liver tissues. H&E staining was performed to observe the degree of liver inflammation. Proteomics in LO2 cells were conducted by Tandem mass tag proteomics assay. Co-immunoprecipitation and Western blotting assays were used to verify YB-1 complexed pGSK3β. ELISA and Western blotting assays were used to detect the concentrations of TNFα and IL-6 in LO2 cells and liver tissues, respectively. Results We found that YB-1 and β-catenin were highly expressed in the LO2 cell NAFLD model, and that the expression of TNFα and IL-6 also increased. Lipid synthases (SREBP-1c and LXRa) expression were decreased, while β-oxidation-related factors (FXR1 and PPARα) expression were increased. The expression of SREBP-1c and LXRa were increased while FXR1 and PPARα were decreased, though such responses were rescued through inhibiting β-catenin expression. Finally, tandem mass tag proteomics, co-immunoprecipitation, and Western blotting demonstrated that YB-1 could form a protein complex with phosphorylated glycogen synthase kinase 3 beta (pGSK3β) to regulate Wnt/β-catenin. In mouse NAFLD livers, immunohistochemistry and Western blotting validated the finding of YB-1 gene downregulation leading to the inhibition of Wnt/β-catenin pathway activation, ultimately inhibiting lipid synthesis and reducing the inflammatory response. Similar to the in vitro investigation, β-catenin overexpression reversed such YB-1 downregulation-induced downstream effects. Upregulation of the YB-1 gene promoted the activation of the Wnt/β-catenin pathway, thus increasing lipid synthesis and the inflammatory response. However, downregulation of β-catenin reversed this phenomenon caused by upregulating YB-1. Conclusions In summary, these results demonstrate that YB-1 regulates liver lipid metabolism by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhenzeng Ma
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Min Deng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianchao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Dapeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lin Gu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shanjun Yan
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|