1
|
Sousa P, Silva L, Câmara JS, Guedes de Pinho P, Perestrelo R. Integrating OMICS-based platforms and analytical tools for diagnosis and management of pancreatic cancer: a review. Mol Omics 2024. [PMID: 39714229 DOI: 10.1039/d4mo00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cancer remains the second leading cause of death worldwide, surpassed only by cardiovascular disease. From the different types of cancer, pancreatic cancer (PaC) has one of the lowest survival rates, with a survival rate of about 20% after the first year of diagnosis and about 8% after 5 years. The lack of highly sensitive and specific biomarkers, together with the absence of symptoms in the early stages, determines a late diagnosis, which is associated with a decrease in the effectiveness of medical intervention, regardless of its nature - surgery and/or chemotherapy. This review provides an updated overview of recent studies combining multi-OMICs approaches (e.g., proteomics, metabolomics) with analytical tools, highlighting the synergy between high-throughput molecular data generation and precise analytical tools such as LC-MS, GC-MS and MALDI-TOF MS. This combination significantly improves the detection, quantification and identification of biomolecules in complex biological systems and represents the latest advances in understanding PaC management and the search for effective diagnostic tools. Large-scale data analysis coupled with bioinformatics tools enables the identification of specific genetic mutations, gene expression patterns, pathways, networks, protein modifications and metabolic signatures associated with PaC pathogenesis, progression and treatment response through the integration of multi-OMICs data.
Collapse
Affiliation(s)
- Patrícia Sousa
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Laurentina Silva
- Hospital Dr Nélio Mendonça, SESARAM, EPERAM - Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, 9004-514 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
2
|
Sudershan A, Bharti S, Sudershan S, Bhagat M, Bhagat S, Behlam I, Panjalyia RK, Kumar P, Kumar P. North India Cancer Risk: A Detailed Review with Focus on Jammu and Kashmir Demographics. Asian Pac J Cancer Prev 2024; 25:3489-3506. [PMID: 39471015 PMCID: PMC11711370 DOI: 10.31557/apjcp.2024.25.10.3489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Cancer is a global medical challenge, and research is at its peak to understand the unique mechanisms of cancer cells. The expanding field of epidemiology, including molecular and environmental studies, helps us better understand the distribution of molecular changes and environmental risk factors in the population. AIM In the present review, we aimed to find out the different genes and environmental factors that are associated with different cancers in the Jammu & Kashmir (J&K) region of the North Indian population. METHOD A Systematic approach of literature survey was used to curate research data based on genetic and environmental epidemiology specifying the J&K region. RESULT Of 640 articles found initially and screening of 490 records, 97 studies were included for the final review. It was observed that numerous genes that are strongly linked to various cancer types have been discovered as a result of the rising genotyping trend, which has grown in the demography exponentially over the last few decades. The majority of these genes are related to cell cycle regulation, cell growth signaling, and apoptosis regulation. Additionally, high promoter hypermethylation of various genes which were found to be attributed to the presence of distinct dietary patterns. The most important environmental risk attributes were salt tea consumption and dried pickles. DISCUSSION & CONCLUSION In conclusion, the J&K population possesses many common polymorphisms in various genes with a small effect size that makes individuals more prone to different forms of cancers interacting with different environmental factors. What we can't do is, change the gene sequence or molecular changes which are the main changes for determining the susceptibility of any altered condition but what we can do is lower/ limit the exposure to the environmental factors which is a key element playing with the susceptibility's threshold. Therefore, limiting exposure to environmental factors could be a major step in lowering the risk of disease.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India.
- Department of Human Genetics, Sri Pratap College, Srinagar, Jammu and Kashmir, India.
| | - Shikha Bharti
- Department of Zoology, Lovely Professional University, Punjab, India.
| | - Srishty Sudershan
- Department of Zoology, Central University of Jammu, Samba, Jammu and Kashmir, India.
| | - Meenakshi Bhagat
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, India.
| | - Sheetal Bhagat
- Department of Psychology, Government Degree College Billawar, University of Jammu, Kathua, Jammu, Jammu & Kashmir, India.
| | - Ishan Behlam
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Science & Research, Mullana, Ambala, Haryana, India.
| | - Rakesh K Panjalyia
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, India.
| | - Pawan Kumar
- Department of Oncology, Government Medical College Kathua, Jammu, Jammu & Kashmir, India.
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India.
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Jacobs MF, Stoffel EM. Genetic and other risk factors for pancreatic ductal adenocarcinoma (PDAC). Fam Cancer 2024; 23:221-232. [PMID: 38573398 DOI: 10.1007/s10689-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in poor prognosis and low 5-year survival rates. While early evidence suggests increased long-term survival in those with screen-detected resectable cancers, surveillance imaging is currently only recommended for individuals with a lifetime risk of PDAC ≥ 5%. Identification of risk factors for PDAC provides opportunities for early detection, risk reducing interventions, and targeted therapies, thus potentially improving patient outcomes. Here, we summarize modifiable and non-modifiable risk factors for PDAC. We review hereditary cancer syndromes associated with risk for PDAC and their implications for patients and their relatives. In addition, other biologically relevant pathways and environmental and lifestyle risk factors are discussed. Future work may focus on elucidating additional genetic, environmental, and lifestyle risk factors that may modify PDAC risk to continue to identify individuals at increased risk for PDAC who may benefit from surveillance and risk reducing interventions.
Collapse
Affiliation(s)
- Michelle F Jacobs
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Wiewiora M, Jopek J, Świętochowska E, Grynkiewicz M, Piecuch J. Evaluations of the combined use of blood- and tissue-based protein biomarkers for pancreatic cancer. Clin Hemorheol Microcirc 2024; 86:383-393. [PMID: 37955083 DOI: 10.3233/ch-231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a low 5-year survival rate. Biomarkers may be of value for the early diagnosis of pancreatic cancer. This study assessed blood- and tumour tissue-based biomarkers associated with pancreatic cancer. METHODS We studied 61 patients who underwent pancreatic resection. Of these 61 patients, 46 patients had PDAC, and 15 patients had inflammatory tumours. Blood and tumour tissue levels of VEGF, hypoxia-inducible factor 1α (HIF-1α) and glucose transporter 1 (GLUT1) were measured. RESULTS Blood concentrations of VEGF (p < 0.000001) and HIF-1α (p = 0.000002) were significantly higher in the PDAC group than in the inflammatory tumour group. Tumour tissue concentrations of VEGF (p < 0.000001), HIF-1α (p = 0.000005) and GLUT1 (0.000002) were also significantly higher in the PDAC group. Univariate analyses revealed that age, BMI, and blood levels of CA19-9, VEGF, and HIF-1α were potential predictors of PDAC. Potential predictors of PDAC in tumour tissue were VEGF, HIF-1α and GLUT1. Multivariate analyses found that VEGF was the most powerful independent predictor of PDAC in blood (OR = 1.016; 95% CI: 1.007-1.025; 0.001) and tumour tissue (OR = 1.02; 95% CI: 1.008-1.032, p = 0.001). The cut-off point for blood VEGF was 134.56 pg/ml, with a sensitivity of 97.8%, specificity of 86.7%, PPV of 95.7%, and NPV of 92.9%. The cut-off point for tissue tumour VEGF in PDAC was 208.59 pg/mg, with a sensitivity, specificity, PPV and NPV of 97.7%, 92.9%, 97.7%, and 92.9%, respectively. CONCLUSIONS There are significant differences in blood-based biomarkers for differentiating between PDAC and inflammatory tumours of the pancreas. VEGF was an independent predictor of PDAC independent of its addition to the routinely used tumour marker CA19-9 antigen.
Collapse
Affiliation(s)
- Maciej Wiewiora
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Janusz Jopek
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michael Grynkiewicz
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Student Scientific Society, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
5
|
Safety and Efficacy of Treatment with/without Ramucirumab in Advanced or Metastatic Cancer: A Meta-Analysis of 11 Global, Double-Blind, Phase 3 Randomized Controlled Trials. JOURNAL OF ONCOLOGY 2022; 2022:2476469. [DOI: 10.1155/2022/2476469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
Ramucirumab, as a vascular endothelial growth factor receptor-2 inhibitor, was first approved in 2014 for treated advanced or metastatic gastric/gastroesophageal junction (GEJ) adenocarcinoma. This study deeply analyzed the efficacy and safety of advanced or metastatic cancer treated with ramucirumab, which included 11 global, double-blind, phase 3 randomized controlled trials with a total of 7410 patients. Subgroup analysis based on different cancer types showed that standard regimens plus ramucirumab significantly increased progression-free survival and overall survival compared with placebo groups in patients with advanced non-small-cell lung cancer (NSCLC), hepatocellular carcinoma, gastric cancer, or GEJ adenocarcinoma. Although a higher proportion of patients achieved overall response and disease control than those treated with placebo, the overall response was not statistically significant between the two groups in advanced NSCLC. Grade 3 or worse treatment-emergent adverse events (TEAEs) that occurred in at least 5% of patients were neutropenia (30.5% in the ramucirumab group vs. 23.5% in the placebo group), leucopenia (14.8% vs. 9.2%), weight decreased (14.2% vs. 8.0%), myalgia (11.7% vs. 7.7%), fatigue (10.9% vs. 7.7%), hypertension (9.2% vs. 2.3%), and anaemia (6.2% vs. 7.7%). In the TEAEs of special interest, the ramucirumab group had a significantly higher incidence of bleeding (mainly grade 1-2 epistaxis and gastrointestinal bleeding), hypertension, proteinuria, liver injury/failure (grade 1-2), venous thromboembolism (grade 1-2), and gastrointestinal perforation (grade ≧3) than the control group.
Collapse
|
6
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
7
|
Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, Hameed Zargar M, Afroze D. Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within. Front Pharmacol 2022; 13:791272. [PMID: 35295334 PMCID: PMC8918694 DOI: 10.3389/fphar.2022.791272] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
A ubiquitously expressed cytokine, transforming growth factor-beta (TGF-β) plays a significant role in various ongoing cellular mechanisms. The gain or loss-of-function of TGF-β and its downstream mediators could lead to a plethora of diseases includes tumorigenesis. Specifically, at the early onset of malignancy TGF-β act as tumour suppressor and plays a key role in clearing malignant cells by reducing the cellular proliferation and differentiation thus triggers the process of apoptosis. Subsequently, TGF-β at an advanced stage of malignancy promotes tumorigenesis by augmenting cellular transformation, epithelial-mesenchymal-transition invasion, and metastasis. Besides playing the dual roles, depending upon the stage of malignancy, TGF-β also regulates cell fate through immune and stroma components. This oscillatory role of TGF-β to fight against cancer or act as a traitor to collaborate and crosstalk with other tumorigenic signaling pathways and its betrayal within the cell depends upon the cellular context. Therefore, the current review highlights and understands the dual role of TGF-β under different cellular conditions and its crosstalk with other signaling pathways in modulating cell fate.
Collapse
|