1
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Gervason S, Meleine M, Lolignier S, Meynier M, Daugey V, Birer A, Aissouni Y, Berthon JY, Ardid D, Filaire E, Carvalho FA. Antihyperalgesic properties of gut microbiota: Parabacteroides distasonis as a new probiotic strategy to alleviate chronic abdominal pain. Pain 2024; 165:e39-e54. [PMID: 37756665 DOI: 10.1097/j.pain.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023]
Abstract
ABSTRACT The potential role of gut microbiota in pain modulation is arousing an emerging interest since recent years. This study investigated neuromodulatory properties of gut microbiota to identify next-generation probiotics to propose alternative therapies for visceral pain management. Neuromodulation ability of 10 bacterial strains isolated from a healthy donor was assessed both on ND7/23 immortalized cell line and primary neuronal cells from rat dorsal root ganglia. This screening highlighted the neuroinhibitory property of Parabacteroides distasonis (F1-2) strain, supported both by its intracellular content and membrane fraction, which was further investigated in visceral pain mouse models. Oral administration of F1-2 resulted in a significant decrease of colonic hypersensitivity (CHS) in dextran sulfate sodium (0.5%) model associated with low-grade inflammation and a significant decrease of CHS in Citrobacter rodentium postinfectious models. No effect of F1-2 oral administration on CHS was observed in a neonatal maternal separation stress model. Antihyperalgesic effect unlikely involved modulation of inflammatory processes or restoration of intestinal barrier. Exploration of direct dialogue mechanisms between this strain and nervous system, assessed by calcium imaging experiments, revealed that F1-2 interacts directly with nociceptors by reducing activation level on capsaicin, inflammatory soup, and bradykinin stimulations. Our study provides new insights about bacteria-host interaction and places P distasonis as a potential therapeutic strategy in the treatment of visceral pain observed in leaky gut-associated pathologies.
Collapse
Affiliation(s)
- Sandie Gervason
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathieu Meleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphane Lolignier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Maëva Meynier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Aurélien Birer
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- Centre National de Référence de la Résisitance aux Antibiotiques, Service de Bactériologie, Clermont-Ferrand, France
| | - Youssef Aissouni
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | | | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Edith Filaire
- ECREIN Team, Human Nutrition Unit (UNH), UMR 1019 INRAE-UCA, University of Clermont-Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|
4
|
Meynier M, Daugey V, Mallaret G, Gervason S, Meleine M, Barbier J, Aissouni Y, Lolignier S, Bonnet M, Ardid D, De Vos WM, Van Hul M, Suenaert P, Brochot A, Cani PD, Carvalho FA. Pasteurized akkermansia muciniphila improves irritable bowel syndrome-like symptoms and related behavioral disorders in mice. Gut Microbes 2024; 16:2298026. [PMID: 38170633 PMCID: PMC10766393 DOI: 10.1080/19490976.2023.2298026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.
Collapse
Affiliation(s)
- Maëva Meynier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Geoffroy Mallaret
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Sandie Gervason
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathieu Meleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Barbier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Youssef Aissouni
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphane Lolignier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Willem M. De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- The Akkermansia Company™, Mont-Saint-Guibert, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | | | - Patrice D. Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric A. Carvalho
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
5
|
Liu XY, Wu SD. Fecal microbiota transplantation for treatment of irritable bowel syndrome: Current advances and future perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:922-932. [DOI: 10.11569/wcjd.v31.i22.922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a kind of functional gastroin-testinal disorder, characterized by recurrent abdominal pain and altered bowel habits. IBS adversely affects the quality of life of patients for the lack of effective treatment. The etiology of IBS remains poorly known. Previous studies suggested a possible role of gut dysbiosis in IBS pathogenesis. Fecal microbiota transplantation (FMT), which aims to reverse the gut dysbiosis, is a promising strategy in IBS management. In this review, we summarize the role of the gut microbiota in IBS pathogenesis from different aspects. We also review recent studies on efficacy evaluation of FMT in IBS. Besides, we discuss factors affecting the efficacy of FMT, hoping to provide a reference for future IBS treatment strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|