1
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
2
|
Zhao Y, Zhao J, Ma H, Han Y, Xu W, Wang J, Cai Y, Jia X, Jia Q, Yang Q. High Hepcidin Levels Promote Abnormal Iron Metabolism and Ferroptosis in Chronic Atrophic Gastritis. Biomedicines 2023; 11:2338. [PMID: 37760781 PMCID: PMC10525531 DOI: 10.3390/biomedicines11092338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a chronic inflammatory disease and premalignant lesion of gastric cancer. As an antimicrobial peptide, hepcidin can maintain iron metabolic balance and is susceptible to inflammation. OBJECTIVES The objective of this study was to clarify whether hepcidin is involved in abnormal iron metabolism and ferroptosis during CAG pathogenesis. METHODS Non-atrophic gastritis (NAG) and chronic atrophic gastritis (CAG) patient pathology slides were collected, and related protein expression was detected by immunohistochemical staining. The CAG rat model was established using MNNG combined with an irregular diet. RESULTS CAG patients and rats exhibited iron deposition in gastric tissue. CAG-induced ferroptosis in the stomach was characterized by decreased GPX4 and FTH levels and increased 4-HNE levels. Hepcidin, which is mainly located in parietal cells, was elevated in CAG gastric tissue. The high gastric level of hepcidin inhibited iron absorption in the duodenum by decreasing the protein expression of DMT1 and FPN1. In addition, the IL-6/STAT3 signaling pathway induced hepcidin production in gastric tissue. CONCLUSION Our results showed that the high level of gastric hepcidin induced ferroptosis in the stomach but also inhibited iron absorption in the intestines. Inhibiting hepcidin might be a new strategy for the prevention of CAG in the future.
Collapse
Affiliation(s)
- Yashuo Zhao
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jianing Zhao
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| | - Hongyu Ma
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| | - Yan Han
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| | - Weichao Xu
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| | - Jie Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| | - Yanru Cai
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| | - Xuemei Jia
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Yang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang 050013, China
| |
Collapse
|
3
|
Lu L, Chen B, Zhang X, Xu Y, Jin L, Qian H, Liang ZF. The effect of phytochemicals in N-methyl-N-nitro-N-nitroguanidine promoting the occurrence and development of gastric cancer. Front Pharmacol 2023; 14:1203265. [PMID: 37456745 PMCID: PMC10339287 DOI: 10.3389/fphar.2023.1203265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, with a low early diagnosis rate. N-methyl-N-nitro-N-nitroguanidine (MNNG) is one of the main risk factors for gastric cancer. Phytochemicals are healthy active substances derived from vegetables, fruits, nuts, tea, herbal medicines and other plants. Taking phytochemicals is a very promising strategy for the prevention and treatment of gastric cancer. Many studies have proved that phytochemicals have protective effects on MNNG induced gastric cancer via inhibiting cell proliferation, enhancing immunity, suppressing cell invasion and migration, inducing apoptosis and autophagy, blocking angiogenesis, inhibiting Helicobacter pylori infection as well as regulating metabolism and microbiota. The intervention and therapeutic effects of phytochemicals in MNNG induced gastric cancer have attracted more and more attention. In order to better study and explore the role, advantages and challenges of phytochemicals in MNNG induced gastric cancer, we summarized the intervention and therapeutic effects of phytochemicals in MNNG induced gastric cancer. This review may help to further promote the research and clinical application of phytochemicals in MNNG induced gastric cancer, and provide some new insights.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bei Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - XinYi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Longtao Jin
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|