2
|
Lu F, Meng Y, Song X, Li X, Liu Z, Gu C, Zheng X, Jing Y, Cai W, Pinyopornpanish K, Mancuso A, Romeiro FG, Méndez-Sánchez N, Qi X. Artificial Intelligence in Liver Diseases: Recent Advances. Adv Ther 2024; 41:967-990. [PMID: 38286960 DOI: 10.1007/s12325-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Liver diseases cause a significant burden on public health worldwide. In spite of great advances during recent years, there are still many challenges in the diagnosis and treatment of liver diseases. During recent years, artificial intelligence (AI) has been widely used for the diagnosis, risk stratification, and prognostic prediction of various diseases based on clinical datasets and medical images. Accumulative studies have shown its performance for diagnosing patients with nonalcoholic fatty liver disease and liver fibrosis and assessing their severity, and for predicting treatment response and recurrence of hepatocellular carcinoma, outcomes of liver transplantation recipients, and risk of drug-induced liver injury. Herein, we aim to comprehensively summarize the current evidence regarding diagnostic, prognostic, and/or therapeutic role of AI in these common liver diseases.
Collapse
Affiliation(s)
- Feifei Lu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Yao Meng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaoting Song
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaotong Li
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Zhuang Liu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Chunru Gu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Xiaojie Zheng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Yi Jing
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Wei Cai
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Andrea Mancuso
- Medicina Interna 1, Azienda di Rilievo Nazionale Ad Alta Specializzazione Civico-Di Cristina-Benfratelli, Palermo, Italy.
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Xingshun Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Postgraduate College, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Urhuț MC, Săndulescu LD, Streba CT, Mămuleanu M, Ciocâlteu A, Cazacu SM, Dănoiu S. Diagnostic Performance of an Artificial Intelligence Model Based on Contrast-Enhanced Ultrasound in Patients with Liver Lesions: A Comparative Study with Clinicians. Diagnostics (Basel) 2023; 13:3387. [PMID: 37958282 PMCID: PMC10650544 DOI: 10.3390/diagnostics13213387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is widely used in the characterization of liver tumors; however, the evaluation of perfusion patterns using CEUS has a subjective character. This study aims to evaluate the accuracy of an automated method based on CEUS for classifying liver lesions and to compare its performance with that of two experienced clinicians. The system used for automatic classification is based on artificial intelligence (AI) algorithms. For an interpretation close to the clinical setting, both clinicians knew which patients were at high risk for hepatocellular carcinoma (HCC), but only one was aware of all the clinical data. In total, 49 patients with 59 liver tumors were included. For the benign and malignant classification, the AI model outperformed both clinicians in terms of specificity (100% vs. 93.33%); still, the sensitivity was lower (74% vs. 93.18% vs. 90.91%). In the second stage of multiclass diagnosis, the automatic model achieved a diagnostic accuracy of 69.93% for HCC and 89.15% for liver metastases. Readers demonstrated greater diagnostic accuracy for HCC (83.05% and 79.66%) and liver metastases (94.92% and 96.61%) compared to the AI system; however, both were experienced sonographers. The AI model could potentially assist and guide less-experienced clinicians to discriminate malignant from benign liver tumors with high accuracy and specificity.
Collapse
Affiliation(s)
- Marinela-Cristiana Urhuț
- Department of Gastroenterology, Emergency County Hospital of Craiova, Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Larisa Daniela Săndulescu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Costin Teodor Streba
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Oncometrics S.R.L., 200677 Craiova, Romania;
| | - Mădălin Mămuleanu
- Oncometrics S.R.L., 200677 Craiova, Romania;
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania
| | - Adriana Ciocâlteu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Sergiu Marian Cazacu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
4
|
Gheorghe EC, Nicolau C, Kamal A, Udristoiu A, Gruionu L, Saftoiu A. Artificial Intelligence (AI)-Enhanced Ultrasound Techniques Used in Non-Alcoholic Fatty Liver Disease: Are They Ready for Prime Time? APPLIED SCIENCES 2023; 13:5080. [DOI: 10.3390/app13085080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic liver disease, affecting approximately 2 billion individuals worldwide with a spectrum that can range from simple steatosis to cirrhosis. Typically, the diagnosis of NAFLD is based on imaging studies, but the gold standard remains liver biopsies. Hence, the use of artificial intelligence (AI) in this field, which has recently undergone rapid development in various aspects of medicine, has the potential to accurately diagnose NAFLD and steatohepatitis (NASH). This paper provides an overview of the latest research that employs AI for the diagnosis and staging of NAFLD, as well as applications for future developments in this field.
Collapse
Affiliation(s)
- Elena Codruta Gheorghe
- Department of Family Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Carmen Nicolau
- Lotus Image Medical Center, ActaMedica SRL Târgu Mureș, 540084 Târgu Mureș, Romania
| | - Adina Kamal
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Anca Udristoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, 200776 Craiova, Romania
| | - Lucian Gruionu
- Faculty of Mechanics, University of Craiova, 200512 Craiova, Romania
| | - Adrian Saftoiu
- Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Department of Gastroenterology, Ponderas Academic Hospital, 014142 Bucharest, Romania
| |
Collapse
|
5
|
Artificial Intelligence-The Rising Star in the Field of Gastroenterology and Hepatology. Diagnostics (Basel) 2023; 13:diagnostics13040662. [PMID: 36832150 PMCID: PMC9955763 DOI: 10.3390/diagnostics13040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Artificial intelligence (AI) is a term that covers a multitude of techniques that are used in a manner that tries to reproduce human intelligence. AI is helpful in various medical specialties that use imaging for diagnostic purposes, and gastroenterology is no exception. In this field, AI has several applications, such as detecting and classifying polyps, detecting the malignancy in polyps, diagnosing Helicobacter pylori infection, gastritis, inflammatory bowel disease, gastric cancer, esophageal neoplasia, and pancreatic and hepatic lesions. The aim of this mini-review is to analyze the currently available studies regarding AI in the field of gastroenterology and hepatology and to discuss its main applications as well as its main limitations.
Collapse
|
6
|
Jiang Y, Wang K, Wang YR, Xiang YJ, Liu ZH, Feng JK, Cheng SQ. Preoperative and Prognostic Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Review Based on Artificial Intelligence. Technol Cancer Res Treat 2023; 22:15330338231212726. [PMID: 37933176 PMCID: PMC10631353 DOI: 10.1177/15330338231212726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Microvascular invasion of hepatocellular carcinoma is an important factor affecting tumor recurrence after liver resection and liver transplantation. There are many ways to classify microvascular invasion, however, an international consensus is urgently needed. Recently, artificial intelligence has emerged as an important tool for improving the clinical management of hepatocellular carcinoma. Many studies about microvascular invasion currently focus on preoperative and prognosis prediction of microvascular invasion using artificial intelligence. In this paper, we review the definition and staging of microvascular invasion, especially the diagnosis of it by using artificial intelligence. In preoperative prediction, deep learning based on multimodal data modeling of radiomics-screened features, clinical features, and medical images is currently the most effective means. In prognostic prediction, pathology is the gold standard, and the techniques used should more effectively utilize the global features of the pathology images.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu-Ran Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan-Jun Xiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zong-Han Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|