1
|
Mishra A, San Valentin EMD, Barcena AJR, Bolinas DKM, Bernardino MR, Canlas G, Ricks KA, Damasco JA, Melancon MP. Antibody-Targeted Bismuth Gadolinium Nanoconjugate for Image-Guided Radiotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40026156 DOI: 10.1021/acsami.4c21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Hepatocellular carcinoma (HCC), one of the most lethal cancers of the liver, has limited treatment options at advanced stages. Here, bismuth gadolinium (BiGd) nanoparticles (NPs) conjugated with anti-vascular endothelial growth factor antibody (aVEGF) are designed and tested for targeted image-guided radiation therapy against HCC. The BiGd NPs are synthesized using the sol-gel technique, functionalized with silica NPs, and labeled with fluorescent protamine-rhodamine B. For tumor targeting, the NPs are conjugated with aVEGF, and an in vitro study confirms the binding of the aVEGF-BiGd nanoconjugate to McA-RH7777 hepatoma cells. Biocompatibility of the aVEGF-BiGd nanoconjugate is evaluated using McA-RH7777 cells, with no cytotoxicity observed even at 250 μg/mL. Also, aVEGF-BiGd demonstrates in vivo microcomputed tomography contrast enhancement. NPs and/or radiation therapy (RT) is conducted in female BALB/c nude mice with subcutaneously implanted McA-RH7777 cells, and a significant reduction in tumor size is observed in the mice treated with the aVEGF-BiGd nanoconjugate and RT compared to other groups (p < 0.01). The combined effect of nanoconjugate and RT exhibits decreased vascularity, cell proliferation, and increased apoptosis. This study demonstrates the potential of the developed hybrid BiGd nanoconjugate for targeted and image-guided radiotherapy of HCC.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Allan John R Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Dominic Karl M Bolinas
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Marvin R Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gino Canlas
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Kaitlin A Ricks
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Mortaheb S, Pezeshki PS, Rezaei N. Bispecific therapeutics: a state-of-the-art review on the combination of immune checkpoint inhibition with costimulatory and non-checkpoint targeted therapy. Expert Opin Biol Ther 2024; 24:1335-1351. [PMID: 39503381 DOI: 10.1080/14712598.2024.2426636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination. BsAbs along with other bispecific platforms such as bispecific fusion proteins, nanobodies, and CAR-T cells may help to avoid development of resistance and reduce irAEs caused by on-target/off-tumor binding effects of mAbs. AREAS COVERED A literature search was performed using PubMed for English-language articles to provide a comprehensive overview of preclinical and clinical studies on bsAbs specified for both immune checkpoints and non-checkpoint molecules as a well-enhanced class of therapeutics. EXPERT OPINION Identifying suitable targets and selecting effective engineering platforms enhance the potential of bsAbs to address the challenges associated with conventional therapies such as ICIs, positioning them as a promising class of therapeutics in the landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Samin Mortaheb
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang Z, Fan L, Xu H, Qin Z, Zhu Z, Wu D, Zhang Y, Liu R, Wei J, Qian Z, Yang P, Xie B, Yuan M, Qian J. HSP90AA1 is an unfavorable prognostic factor for hepatocellular carcinoma and contributes to tumorigenesis and chemotherapy resistance. Transl Oncol 2024; 50:102148. [PMID: 39388959 PMCID: PMC11736399 DOI: 10.1016/j.tranon.2024.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the leading causes of tumor-related deaths. Accumulating evidence indicates that immunogenic cell death (ICD) could occur in tumor cells. However, ICD-related studies are limited in HCC. This study collected HCC RNA sequencing data from the Cancer Genome Atlas, International Cancer Genome Consortium, and Gene Expression Omnibus databases. R software was used to analyze the expression of ICD in HCC and to screen essential genes with prognostic value. qRT-PCR and WB determined the mRNA and protein expressions of hub gene. Cell viability assay, Clonal formation assay, and Live/dead staining assay were employed to determine the gene functions. After cross-analysis of differentially expressed genes (DEGs) and ICD-related genes (ICDRGs), 7 differentially expressed ICDRGs were identified in HCC. Of them, HSP90AA1, with the most excellent prognostic value in HCC, was selected, whose expression was also validated in public cohorts, cell lines, and clinical tissue samples. High HSP90AA1 expression indicated an inferior prognosis of HCC, and HSP90AA1 knockdown significantly suppressed cell viability and chemotherapy resistance of HCC. ICD-related gene HSP90AA1 was an unfavorable factor for HCC, and high HSP90AA1 expression contributed to tumor cell survival and chemotherapy resistance.
Collapse
Affiliation(s)
- Zhaoying Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Longfei Fan
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Heng Xu
- Department of Medical Imaging Center, Anhui Women and Children' s Medical Center, No.15 Yimin Street, Hefei, 230001, China
| | - Zhongqiang Qin
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Ziyi Zhu
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Di Wu
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Yigang Zhang
- Graduate school, Bengbu Medical University, No.2006 Donghai Road, Longzihu District, Bengbu 233030, China
| | - Ruoyu Liu
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Jianzhu Wei
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Zhen Qian
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Peipei Yang
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Bo Xie
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Mu Yuan
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China.
| | - Jingyu Qian
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China.
| |
Collapse
|
4
|
Hsiao YF, Cheng SB, Lai CY, Liu HT, Lin HC, Huang YC. Vascular endothelial growth factor is associated with hepatocellular carcinoma recurrence, independent of folate and glutathione-related antioxidant enzymes: A follow-up study. Nutr Res 2024; 128:70-81. [PMID: 39059060 DOI: 10.1016/j.nutres.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
The associations of tumor angiogenesis with folate and antioxidant capacities in patients with hepatocellular carcinoma (HCC) and their effects on HCC recurrence have not yet been investigated. We investigated the changes and relationships of VEGF, folate, GSH, and GSH-related antioxidant enzymes in patients with HCC before tumor resection, as well as 1 month, 1 year, and 3 years after tumor resection, and their effects on HCC recurrence. 95 HCC patients who underwent tumor resection were recruited. Patients were followed up before tumor resection (pre-resection), 1 month after tumor resection (post-resection), 1 year, and 3 years of follow-up. The recurrence and survival status of patients were evaluated. Plasma VEGF concentrations decreased slightly during follow-up. Serum folate and GSH concentrations and plasma GPx and GR activities increased significantly from pre-resection to post-resection and remained stable at follow-up. Pre-resection plasma VEGF was positively correlated with GSH, GPx, and GR, but negatively correlated with folate and GST. The high pre-resection plasma VEGF was a significant predictor of a high HCC rate (hazard ratio = 1.05, p = 0.035), remaining significant after adjustments for folate, GSH, GPx, GR, and GST to diminish their interference with VEGF. Pre-tumor-resection plasma VEGF constitutes a potential independent marker for predicting HCC recurrence. However, the associations of plasma VEGF with folate and GSH-related antioxidant capacities in HCC patients cannot be ignored.
Collapse
Affiliation(s)
- Yung-Fang Hsiao
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Bin Cheng
- Organ Transplantation Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Yu Lai
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Organ Transplantation Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Hsiao-Tien Liu
- Organ Transplantation Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Chen Lin
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chia Huang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Liu S, Wei Y, Nie L, Tang Z, Lu Q, Liang Q. Effect of novel anti-tumor and anti-angiogenesis drug taurolactone on angiogenic factor AGGF1 and angiogenesis mimicry in patients with hepatocellular carcinoma. BMC Cancer 2024; 24:614. [PMID: 38773427 PMCID: PMC11106933 DOI: 10.1186/s12885-024-12356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVE Our study was to investigate the impact of taurolactone, a novel anti-tumor and anti-angiogenic drug, on AGGF1, an angiogenic factor, and angiogenesis mimicry in patients diagnosed with hepatocellular carcinoma (HCC). METHODS A total of 120 HCC patients were enrolled from the Department of Oncology and Hepatobiliary Surgery at our hospital between May 2021 and December 2022. HCC diagnoses were confirmed through imaging or tissue biopsy for all patients. The age of patients ranged from 37 to 72 years, with an average age of 64.29 ± 4.58 years. These participants were divided equally into two groups: the control group and the observation group, each consisting of 60 individuals. While the control group received standard drug treatment, the observation group was administered taurolactone treatment. Before being included in the study, all participants or their legal representatives provided signed informed consent. Patient demographic information was collected through a questionnaire survey. ELISA was used to measure the levels of VEGF and AGGF1 in patients following treatment. Western blot was applied to assess the protein expression of PDGF, Angiopoietin, and AGGF1. MRI imaging technology was utilized to assess the perfusion characteristics of tumor blood vessels in patients. Tumor vessel density was compared between patients using ultrasonography. We also conducted a comparison between the two groups in terms of progression-free survival and overall survival. RESULTS General patient information between the two groups showed no significant differences (P > 0.05). Of note, the observation group exhibited greatly lower levels of VEGF and AGGF1 compared to the control group (P < 0.05). Moreover, the levels of PDGF, Angiopoietin, and AGGF1 protein expression were significantly reduced in the observation group compared to the control group (P < 0.05). In terms of tumor perfusion, the observation group displayed lower average and maximum perfusion volumes in tumor blood vessels compared to the control group (P < 0.05). Additionally, the observation group demonstrated delayed peak times and arrival times of tumor blood vessels in comparison to the control group (P < 0.05). Furthermore, the density of tumor blood vessels was notably lower in the observation group compared to the control group (P < 0.05). Patients in the observation group had longer progression-free survival and overall survival than the control group (P < 0.05). CONCLUSION In HCC patients, our study highlighted the potential efficacy of taurolactone treatment as it effectively inhibited angiogenic factors and angiogenesis mimicry, ultimately leading to an improved prognosis for these patients.
Collapse
Affiliation(s)
- Shaoping Liu
- Department of General Practice, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.43 Wuhan Road, Huangshigang District, Huangshi, 435000, Hubei, China
| | - Yinzhi Wei
- Department of General Practice, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.43 Wuhan Road, Huangshigang District, Huangshi, 435000, Hubei, China
| | - Lei Nie
- Department of Abdominal Tumor Surgery, Hubei Province Cancer Hospital, Wuhan, China
| | - Ze Tang
- Department of Abdominal Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Qi Lu
- Department of HepatobiliarySurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Qun Liang
- Department of General Practice, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.43 Wuhan Road, Huangshigang District, Huangshi, 435000, Hubei, China.
| |
Collapse
|
6
|
Peng S, Huang H, Zhu X, Chen J, Ding X, Wang F, Chen L, Lu Z. Anlotinib plus tislelizumab for recurrent metastatic pancreas ductal adenocarcinoma with germline BRCA2 mutation: A case report. Exp Ther Med 2024; 27:178. [PMID: 38515651 PMCID: PMC10952340 DOI: 10.3892/etm.2024.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
While combined immunotherapy and anti-angiogenic therapy have demonstrated efficacy in renal cell carcinoma, non-small cell lung cancer and hepatocellular carcinoma, the efficacy of first-line treatment for pancreatic ductal adenocarcinoma (PDAC) with germline BRCA2 mutation remains unproven. We described a BRCA2-mutated patient with PDAC who presented with posterior cardiac metastasis 8 months after surgery. After receiving four cycles of anlotinib combined with tislelizumab, abdominal CT scans indicated a complete response. The patient sustained this response for over 14 months on the combination regimen, with no reported adverse events. In conclusion, the combination of tislelizumab and anlotinib may offer a viable therapeutic option for recurrent metastatic BRCA2-mutated PDAC.
Collapse
Affiliation(s)
- Sujuan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jinhong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xinjing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Fen Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhihui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
7
|
Tian C, Yu Y, Wang Y, Yang L, Tang Y, Yu C, Feng G, Zheng D, Wang X. Neoadjuvant Immune Checkpoint Inhibitors in hepatocellular carcinoma: a meta-analysis and systematic review. Front Immunol 2024; 15:1352873. [PMID: 38440727 PMCID: PMC10909934 DOI: 10.3389/fimmu.2024.1352873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Background Neoadjuvant immunotherapy has demonstrated beneficial outcomes in various cancer types; however, standardized protocols for neoadjuvant immunotherapy in hepatocellular carcinoma (HCC) are currently lacking. This systematic review and meta-analysis aims to investigate the reliability of neoadjuvant immunotherapy's efficacy and safety in the context of HCC. Methods A systematic search was conducted across PubMed (MEDLINE), EMBASE, the Web of Science, the Cochrane Library, and conference proceedings to identify clinical trials involving resectable HCC and neoadjuvant immunotherapy. Single-arm meta-analyses were employed to compute odds ratios and 95% confidence intervals (CIs). Heterogeneity analysis, data quality assessment, and subgroup analyses based on the type of immunotherapy drugs and combination therapies were performed. This meta-analysis is registered in PROSPERO (identifier CRD42023474276). Results This meta-analysis included 255 patients from 11 studies. Among resectable HCC patients, neoadjuvant immunotherapy exhibited an overall major pathological response (MPR) rate of 0.47 (95% CI 0.31-0.70) and a pathological complete response (pCR) rate of 0.22 (95% CI 0.14-0.36). The overall objective response rate (ORR) was 0.37 (95% CI 0.20-0.69), with a grade 3-4 treatment-related adverse event (TRAE) incidence rate of 0.35 (95% CI 0.24-0.51). Furthermore, the combined surgical resection rate was 3.08 (95% CI 1.66-5.72). Subgroup analysis shows no significant differences in the efficacy and safety of different single-agent immunotherapies; the efficacy of dual ICIs (Immune Checkpoint Inhibitors) combination therapy is superior to targeted combined immunotherapy and monotherapy, while the reverse is observed in terms of safety. Discussion Neoadjuvant immunotherapy presents beneficial outcomes in the treatment of resectable HCC. However, large-scale, high-quality experiments are warranted in the future to provide robust data support.
Collapse
Affiliation(s)
- Chunhong Tian
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lunwei Yang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Tang
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyang Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaofei Feng
- Department of Oncology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Dayong Zheng
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatopancreatobiliary, Cancer Center, Southern Medical University, Guangzhou, China
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Beibei District Traditional Chinese Medicine Hospital (Chongqing Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine), Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Li S, Li K, Wang K, Yu H, Wang X, Shi M, Liang Z, Yang Z, Hu Y, Li Y, Liu W, Li H, Cheng S, Ye L, Yang Y. Low-dose radiotherapy combined with dual PD-L1 and VEGFA blockade elicits antitumor response in hepatocellular carcinoma mediated by activated intratumoral CD8 + exhausted-like T cells. Nat Commun 2023; 14:7709. [PMID: 38001101 PMCID: PMC10673920 DOI: 10.1038/s41467-023-43462-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Atezolizumab (anti-PD-L1) combined with bevacizumab (anti-VEGFA) is the first-line immunotherapy for advanced hepatocellular carcinoma (HCC), but the number of patients who benefit from this regimen remains limited. Here, we combine dual PD-L1 and VEGFA blockade (DPVB) with low-dose radiotherapy (LDRT), which rapidly inflames tumors, rendering them vulnerable to immunotherapy. The combinatorial therapy exhibits superior antitumor efficacy mediated by CD8+ T cells in various preclinical HCC models. Treatment efficacy relies upon mobilizing exhausted-like CD8+ T cells (CD8+ Tex) with effector function and cytolytic capacity. Mechanistically, LDRT sensitizes tumors to DPVB by recruiting stem-like CD8+ Tpex, the progenitor exhausted CD8+ T cells, from draining lymph nodes (dLNs) into the tumor via the CXCL10/CXCR3 axis. Together, these results further support the rationale for combining LDRT with atezolizumab and bevacizumab, and its clinical translation.
Collapse
Affiliation(s)
- Siqi Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiangyang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 517108, China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zhixing Liang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhou Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongwei Hu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Shi Q, Huang P, Zhang Z, Zhang W, Liu L, Yan Z. Hepatocellular Carcinoma with Radiological Progression: Lenvatinib Plus PD-1 Inhibitor Combined with Microwave Ablation and Synchronous Transarterial Chemoembolization. J Hepatocell Carcinoma 2023; 10:1861-1871. [PMID: 37885925 PMCID: PMC10599250 DOI: 10.2147/jhc.s426308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose To determine the clinical outcomes of lenvatinib plus PD-1 inhibitor combined with microwave ablation (MWA) and synchronous transarterial chemoembolization (TACE) in patients with progressive hepatocellular carcinoma (pHCC). Materials and Methods This retrospective study enrolled pHCC patients who underwent lenvatinib plus PD-1 inhibitor combined with MWA and TACE (LP-MT) or lenvatinib combined with MWA and TACE (L-MT) from January 2019 to December 2022. Treatment-related adverse events (AEs) were recorded during the follow-up. Progression-free survival (PFS) and overall survival (OS) were the primary outcomes. The prognostic analyses for survival were performed using Cox proportional hazard regression model. Results In total, 90 eligible patients with pHCC who received combination therapy were included in the study. Among them, 42 patients received LP-MT and 48 patients received L-MT. There were no significant differences in the baseline characteristics between the two groups. Patients who underwent lenvatinib plus PD-1 inhibitor combined with MWA and TACE had better PFS (median, 10.0 vs 7.4 months, P = 0.03) than those who underwent combination therapy without PD-1 inhibitor, although no significant difference was found in OS (median, 22.5 vs 20.0 months, P = 0.19) between the two groups. The disease control rate of LP-MT group was higher than that of L-MT group (88.1% vs 64.6%, P = 0.01), especially in patients with BCLC stage C (89.3% vs 70.0%, P = 0.03). Univariate and multivariate analyses indicated that treatment method and Child-Pugh class were independent prognostic factors for PFS. The AEs of LP-MT group were comparable and tolerable to those of L-MT group (Any grade, 78.6% vs 62.5%, P = 0.10; Grade 3, 23.8% vs 12.5%, P = 0.16). Conclusion Lenvatinib plus PD-1 inhibitor may be slightly superior to lenvatinib alone when combined with local interventional therapy for progressive HCC, especially in patients with BCLC stage C.
Collapse
Affiliation(s)
- Qin Shi
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institution of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Peng Huang
- Shanghai Institution of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Zihan Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institution of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Wen Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institution of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institution of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institution of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
11
|
Gu L, Jin X, Liang H, Yang C, Zhang Y. Upregulation of CSNK1A1 induced by ITGB5 confers to hepatocellular carcinoma resistance to sorafenib in vivo by disrupting the EPS15/EGFR complex. Pharmacol Res 2023; 192:106789. [PMID: 37149115 DOI: 10.1016/j.phrs.2023.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Oral multitarget tyrosine kinase inhibitors (TKIs), such as sorafenib, which suppress tumor cell proliferation and tumor angiogenesis, have been approved to treat patients with hepatocellular carcinoma (HCC). Of note, only approximately 30% of patients can benefit from TKIs, and this population usually acquires drug resistance within 6 months. In this study, we intended to explore the mechanism associated with regulating the sensitivity of HCC to TKIs. We revealed that integrin subunit β 5 (ITGB5) is abnormally expressed in HCC and contributes to decreased the sensitivity of HCC to sorafenib. Mechanistically, unbiased mass spectrometry analysis using ITGB5 antibodies revealed that ITGB5 interacts with EPS15 to prevent the degradation of EGFR in HCC cells, which activates AKT-mTOR signaling and the MAPK pathway to reduce the sensitivity of HCC cells to sorafenib. In addition, mass spectrometry analysis showed that CSNK1A1 binds to ITGB5 in HCC cells. Further study indicated that ITGB5 increased the protein level of CSNK1A1 through the EGFR-AKT-mTOR pathway in HCC. Upregulated CSNK1A1 phosphorylates ITGB5 to enhance the interaction between ITGB5 and EPS15 and activate EGFR in HCC cells. Thus, we identified a positive feedback loop between ITGB5-EPS15-EGFR-CSNK1A1 in HCC cells. This finding provides a theoretical basis for the future development of therapeutic strategies to improve the anti-HCC efficacy of sorafenib.
Collapse
Affiliation(s)
- Li Gu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Yu Zhang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|