1
|
Kothegala L, Miranda C, Singh M, Krieger JP, Gandasi NR. Somatostatin Containing δ-Cell Number Is Reduced in Type-2 Diabetes. Int J Mol Sci 2023; 24:ijms24043449. [PMID: 36834860 PMCID: PMC9959292 DOI: 10.3390/ijms24043449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Recent developments suggest that increased glucagon and decreased somatostatin secretion from the pancreas contribute to hyperglycaemia in type-2 diabetes (T2D) patients. There is a huge need to understand changes in glucagon and somatostatin secretion to develop potential anti-diabetic drugs. To further describe the role of somatostatin in the pathogenesis of T2D, reliable means to detect islet δ-cells and somatostatin secretion are necessary. In this study, we first tested currently available anti-somatostatin antibodies against a mouse model that fluorescently labels δ-cells. We found that these antibodies only label 10-15% of the fluorescently labelled δ-cells in pancreatic islets. We further tested six antibodies (newly developed) that can label both somatostatin 14 (SST14) and 28 (SST28) and found that four of them were able to detect above 70% of the fluorescent cells in the transgenic islets. This is quite efficient compared to the commercially available antibodies. Using one of these antibodies (SST10G5), we compared the cytoarchitecture of mouse and human pancreatic islets and found fewer δ-cells in the periphery of human islets. Interestingly, the δ-cell number was also reduced in islets from T2D donors compared to non-diabetic donors. Finally, with the aim to measure SST secretion from pancreatic islets, one of the candidate antibodies was used to develop a direct-ELISA-based SST assay. Using this novel assay, we could detect SST secretion under low and high glucose conditions from the pancreatic islets, both in mice and humans. Overall, using antibody-based tools provided by Mercodia AB, our study indicates reduced δ-cell numbers and SST secretion in diabetic islets.
Collapse
Affiliation(s)
- Lakshmi Kothegala
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Box 430, 40530 Gothenburg, Sweden
| | - Caroline Miranda
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Box 430, 40530 Gothenburg, Sweden
| | - Meetu Singh
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Box 430, 40530 Gothenburg, Sweden
| | - Nikhil R. Gandasi
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Box 430, 40530 Gothenburg, Sweden
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
- Correspondence: or
| |
Collapse
|
2
|
Nagarajan SK, Babu S, Kulkarni SA, Vadivelu A, Devaraju P, Sohn H, Madhavan T. Understanding the influence of lipid bilayers and ligand molecules in determining the conformational dynamics of somatostatin receptor 2. Sci Rep 2021. [PMID: 33828200 DOI: 10.1038/s41598‐021‐87422‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Somatostatin receptor 2 (SSTR2) is a G-protein coupled receptor (GPCR) that controls numerous cellular processes including cell-to-cell signaling. In this study, we report how the lipid and ligand molecules influence the conformational dynamics of the membrane-bound SSTR2. Molecular simulations of different holo and apoenzyme complexes of SSTR2 in the presence and absence of a lipid bilayer were performed, observed, and correlated with previously reported studies. We identified the important SSTR2 residues that take part in the formation of the SSTR2-ligand complex. On analyzing the molecular simulation trajectories, we identified that the residue D3.32 is crucial in determining the bioactive conformation of SSTR2 ligands in the binding site. Based on the results, we suggest that designing a novel SSTR2 ligand with an H-bond donor group at the R1 position, and hydrophobic groups at R2 and R3 might have higher activity and SSTR2-selectivity. We analyzed the simulated systems to identify other important structural features involved in SSTR2-ligand binding and to observe the different conformational changes that occur in the protein after the ligand binding. Additionally, we studied the conformational dynamics of N- and C-terminal regions of SSTR2 in the presence and absence of the lipid bilayer. Both the systems were compared to understand the influence of lipid molecules in the formation of secondary structural domains by these extracellular regions. The comparative study revealed that the secondary structural elements formed by C-terminal residues in presence of lipid molecules is crucial for the functioning of SSTR2. Our study results highlight the structural complexities involved in the functioning of SSTR upon binding with the ligands in the presence and absence of lipid bilayer, which is essential for designing novel drug targets.
Collapse
Affiliation(s)
- Santhosh Kumar Nagarajan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Sathya Babu
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Seema A Kulkarni
- Department of Food and Process Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Aanand Vadivelu
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India
| | - Panneer Devaraju
- Unit of Vector Biology and Control, ICMR-Vector Control Research Centre, Indian Council of Medical Research (ICMR), Puducherry, India
| | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, South Korea.
| | - Thirumurthy Madhavan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, 603203, India.
| |
Collapse
|
3
|
Understanding the influence of lipid bilayers and ligand molecules in determining the conformational dynamics of somatostatin receptor 2. Sci Rep 2021; 11:7677. [PMID: 33828200 PMCID: PMC8027056 DOI: 10.1038/s41598-021-87422-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/26/2021] [Indexed: 11/11/2022] Open
Abstract
Somatostatin receptor 2 (SSTR2) is a G-protein coupled receptor (GPCR) that controls numerous cellular processes including cell-to-cell signaling. In this study, we report how the lipid and ligand molecules influence the conformational dynamics of the membrane-bound SSTR2. Molecular simulations of different holo and apoenzyme complexes of SSTR2 in the presence and absence of a lipid bilayer were performed, observed, and correlated with previously reported studies. We identified the important SSTR2 residues that take part in the formation of the SSTR2-ligand complex. On analyzing the molecular simulation trajectories, we identified that the residue D3.32 is crucial in determining the bioactive conformation of SSTR2 ligands in the binding site. Based on the results, we suggest that designing a novel SSTR2 ligand with an H-bond donor group at the R1 position, and hydrophobic groups at R2 and R3 might have higher activity and SSTR2-selectivity. We analyzed the simulated systems to identify other important structural features involved in SSTR2-ligand binding and to observe the different conformational changes that occur in the protein after the ligand binding. Additionally, we studied the conformational dynamics of N- and C-terminal regions of SSTR2 in the presence and absence of the lipid bilayer. Both the systems were compared to understand the influence of lipid molecules in the formation of secondary structural domains by these extracellular regions. The comparative study revealed that the secondary structural elements formed by C-terminal residues in presence of lipid molecules is crucial for the functioning of SSTR2. Our study results highlight the structural complexities involved in the functioning of SSTR upon binding with the ligands in the presence and absence of lipid bilayer, which is essential for designing novel drug targets.
Collapse
|
4
|
Spiliopoulou M, Karavassili F, Triandafillidis DP, Valmas A, Fili S, Kosinas C, Barlos K, Barlos KK, Morin M, Reinle-Schmitt ML, Gozzo F, Margiolaki I. New perspectives in macromolecular powder diffraction using single-photon-counting strip detectors: high-resolution structure of the pharmaceutical peptide octreotide. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2021; 77:186-195. [PMID: 33944797 DOI: 10.1107/s2053273321001698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022]
Abstract
Advances in instrumentation, as well as the development of powerful crystallographic software have significantly facilitated the collection of high-resolution diffraction data and have made X-ray powder diffraction (XRPD) particularly useful for the extraction of structural information; this is true even for complex molecules, especially when combined with synchrotron radiation. In this study, in-line with past instrumental profile studies, an improved data collection strategy exploiting the MYTHEN II detector system together with significant beam focusing and tailored data collection options was introduced and optimized for protein samples at the Material Science beamline at the Swiss Light Source. Polycrystalline precipitates of octreotide, a somatostatin analog of particular pharmaceutical interest, were examined with this novel approach. XRPD experiments resulted in high angular and d-spacing (1.87 Å) resolution data, from which electron-density maps of enhanced quality were extracted, revealing the molecule's structural properties. Since microcrystalline precipitates represent a viable alternative for administration of therapeutic macromolecules, XRPD has been acknowledged as the most applicable tool for examining a wide spectrum of physicochemical properties of such materials and performing studies ranging from phase identification to complete structural characterization.
Collapse
Affiliation(s)
- Maria Spiliopoulou
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, GR-26500, Greece
| | - Fotini Karavassili
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, GR-26500, Greece
| | | | - Alexandros Valmas
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, GR-26500, Greece
| | - Stavroula Fili
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, GR-26500, Greece
| | - Christos Kosinas
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, GR-26500, Greece
| | | | | | - Mickael Morin
- Excelsus Structural Solutions (Swiss) AG, Park Innovaare, Villigen, 5234, Switzerland
| | | | - Fabia Gozzo
- Excelsus Structural Solutions (Swiss) AG, Park Innovaare, Villigen, 5234, Switzerland
| | - Irene Margiolaki
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, GR-26500, Greece
| |
Collapse
|
5
|
Applications of X-ray Powder Diffraction in Protein Crystallography and Drug Screening. CRYSTALS 2020. [DOI: 10.3390/cryst10020054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Providing fundamental information on intra/intermolecular interactions and physicochemical properties, the three-dimensional structural characterization of biological macromolecules is of extreme importance towards understanding their mechanism of action. Among other methods, X-ray powder diffraction (XRPD) has proved its applicability and efficiency in numerous studies of different materials. Owing to recent methodological advances, this method is now considered a respectable tool for identifying macromolecular phase transitions, quantitative analysis, and determining structural modifications of samples ranging from small organics to full-length proteins. An overview of the XRPD applications and recent improvements related to the study of challenging macromolecules and peptides toward structure-based drug design is discussed. This review congregates recent studies in the field of drug formulation and delivery processes, as well as in polymorph identification and the effect of ligands and environmental conditions upon crystal characteristics. These studies further manifest the efficiency of protein XRPD for quick and accurate preliminary structural characterization.
Collapse
|
6
|
|
7
|
Pan QS, Fang ZP, Huang FJ. Identification, localization and morphology of APUD cells in gastroenteropancreatic system of stomach-containing teleosts. World J Gastroenterol 2000; 6:842-847. [PMID: 11819706 PMCID: PMC4728272 DOI: 10.3748/wjg.v6.i6.842] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2000] [Revised: 07/19/2000] [Accepted: 07/26/2000] [Indexed: 02/06/2023] Open
Abstract
AIM:To identify the type localization and morphology of APUD endocrine cells in the gastroenteropancreatic (GEP) system of stomach-containing teleosts, and study APUD endocrine system in the stomach, intestine and pancreas of fish species.METHODS:Two kinds of immunocytochemical (ICC) techniques of the streptavidin biotin-peroxidase complex (SABC) and streptavidin-peroxidase (S-P) method were used. The identification, localization and morphology of APUD endocrine cells scattered in the mucosa of digestive tract, intermuscular nerve plexus and glandular body of northern snakehead (Channa argus), ricefield eel (Monopterus albus), yellow catfish (Pelteobagrus fulvidraco), mandarinfish (Siniperca chuatsi), largemouth bass (Micropterus salmoides),oriental sheatfish (Silurus asotus), freshwater pomfret (Colossoma brachypomum) and nile tilapia (Tilapia nilotica) were investigated with 8 kinds of antisera.RESULTS:The positive reaction of 5-hydroxytryptamine (5-HT) immunoreactive endocrine (IRE) cells was found in the digestive tract and glandular body of 8 fish species in different degree.Only a few gastrin (GAS)-IRE cells were seen in C.argus,M.albusand P.fulvidraco. Glucagon (GLU)IRE cells were not found in the digestive tract and glandular body but existed in pancreatic island of most fish species. The positive reaction of growth hormone (GH)IRE cells was found only in pancreatic island of S. Chuatsi and S. Asotus, no positive reaction in the other 6 fish species. Somatostatin (SOM), calcitonin (CAL), neurofilament (NF) and insulin (INS)-IRE cells in the stomach, intestine and pancreas of 8 kinds of fish were different in distribution and types. The distribution of all 8 APUD cells was the most in gastrointestinal epithelium mucosa and then in digestive glands. The positive reaction of SOM and 5-HT-IRE cells was found in intermuscular nerve plexus of intestine of P.fulvidraco and S.chuatsi. Only GH-IRE cells were densely scattered in the pancreatic islands of S.chuatsi and S. asotus, and odd distribution in the pancreas of S. asotus.SOM-IRE cells were distributed in the pancreatic islands of S. asotus, C. Brachypomumand T. nilotica. There were INS-IRE cells in the pancreatic islands of S. chuatsi and S. asolus. Eight kinds of APUD cells had longer cell body and cytoplasmic process when they were located in the gastrointestinal epithelium, and had shorter cell body and cytoplasmic process in the gastric gland, and irregular shape in the esophagus and pancreatic island.CONCLUSION:Eight kinds of IRE cells were identified in the GEP system of stomach-containing teleosts. These endocrine cells were scattered in gastrointestinal mucosa, intermuscular nerve plexus, gland body, pancreatic gland and islands under APUD system. CAL and GH-IRE cells in the pancreatic islands of fishes showed functional diversity for these two hormones. Their morphological feature provides evidence of endocrine-paracrine and endocrine-exocrine acting mode. This research can morphologically prove that the GEP endocrine system of fish (the lowest vertebrate) is almost the same as of mammal and human.
Collapse
|