1
|
Li J, Gao Q, Liu H, Liu S, Wang Y, Sun X, Zheng J, Yang H, Hu B. Integrating 16S rDNA sequencing analysis and targeted metabolomics to explore the mechanism of Xiexin Tang in treating atherosclerosis mice induced by high-fat diet. J Pharm Biomed Anal 2025; 259:116760. [PMID: 40014894 DOI: 10.1016/j.jpba.2025.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Xiexin Tang (XXT) is a classic Chinese medicine formula that can be used to treat Atherosclerosis (AS). This study aimed to investigate the mechanism by which XXT regulated AS lipid levels. Firstly, the mixture components of XXT were analyzed by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Then, the AS model based on Apolipoprotein E knockout (ApoE-/-) mice was established. Cytokines related to lipid metabolism and bile acid metabolism were detected by Quantitative Real-time PCR (qRT-PCR). 16S rDNA gene sequencing was performed to analyze differential bacterial populations, and the mechanism of XXT regulation of bile acids affecting lipid metabolism was further explored by targeted metabolomics. Further, antibiotic-treated mice were used to investigate the role of gut microbiota in the anti-AS effect of XXT. The results showed that XXT attenuated the lipid levels and reversed the abnormal elevation of cytokines, such as hepatic lipid metabolism and inflammatory reaction in AS mice. XXT also repaired the gut barrier damage and reversed gut microbiota disorders in AS mice. Furthermore, the metabolic levels of bile acids were reshaped by XXT. Whereas, in the absence of gut microbiota, XXT failed to attenuate lipid levels and inhibit the expression of cytokines related to inflammation and bile acid metabolism in AS mice and failed to play a role in ultimately treating AS. In conclusion, XXT could effectively inhibit the inflammatory reaction and lipid accumulation in AS mice, and this effect was closely related to its remodeling of gut microbiota to regulate bile acid metabolism.
Collapse
MESH Headings
- Animals
- Drugs, Chinese Herbal/pharmacology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Mice
- Gastrointestinal Microbiome/drug effects
- Metabolomics/methods
- Lipid Metabolism/drug effects
- Diet, High-Fat/adverse effects
- Male
- Bile Acids and Salts/metabolism
- Mice, Inbred C57BL
- Chromatography, High Pressure Liquid/methods
- Tandem Mass Spectrometry/methods
- RNA, Ribosomal, 16S/genetics
- Mice, Knockout, ApoE
- Disease Models, Animal
- DNA, Ribosomal/genetics
- Cytokines/metabolism
- Mice, Knockout
- Liver/metabolism
- Liver/drug effects
Collapse
Affiliation(s)
- Junling Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Qianru Gao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Songlin Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Yanchun Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Huangjiahu West Road 16, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
2
|
Buchynskyi M, Kamyshna I, Halabitska I, Petakh P, Kunduzova O, Oksenych V, Kamyshnyi O. Unlocking the gut-liver axis: microbial contributions to the pathogenesis of metabolic-associated fatty liver disease. Front Microbiol 2025; 16:1577724. [PMID: 40351307 PMCID: PMC12061941 DOI: 10.3389/fmicb.2025.1577724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex metabolic disorder characterized by hepatic lipid accumulation and subsequent inflammation. This condition is closely linked to metabolic syndrome and obesity, with its prevalence rising due to sedentary lifestyles and high-calorie diets. The pathogenesis of MAFLD involves multiple factors, including insulin resistance, lipotoxicity, oxidative stress, and inflammatory responses. The gut microbiota plays a crucial role in MAFLD development, with dysbiosis contributing to liver inflammation through various mechanisms, such as enhanced intestinal permeability and the translocation of bacterial products like lipopolysaccharide (LPS). Microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids, influence hepatic function and immune responses, with potential implications for disease progression. Specific gut microbiome signatures have been identified in MAFLD patients, offering potential diagnostic and therapeutic targets. Moreover, gut-derived toxins, such as endotoxins, lipopolysaccharides, trimethylamine-N-oxide and bacterial metabolites, significantly influence liver damage and inflammation, highlighting the complex interplay between the gut microbiome and hepatic health. This review comprehensively examines the complex interplay between the gut microbiota and MAFLD, focusing on underlying pathogenic mechanisms, potential biomarkers, and emerging microbiome-targeted therapeutic strategies for disease management.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Oksana Kunduzova
- Institute of Metabolic and Cardiovascular Diseases (I2MC), National Institute of Health and Medical Research (INSERM) 1297, Toulouse III University, Toulouse, France
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
3
|
Kuo CC, Chuang MH, Li CH, Tsai YW, Huang PY, Kuo HT, Lai CC. Glucagon-Like Peptide-1 Receptor Agonists and Liver Outcomes in Patients With MASLD and Type 2 Diabetes. Aliment Pharmacol Ther 2025; 61:1163-1174. [PMID: 39791391 DOI: 10.1111/apt.18502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND AIMS Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) have demonstrated long-term liver benefits in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes (T2D). However, no direct comparison between these therapies has been conducted. This study aimed to compare major adverse liver outcomes (MALOs) between GLP-1 RAs and SGLT2is in patients with MASLD and T2D. METHODS Using the TriNetX Research Network, a multinational and multi-institutional database, we identified adults with MASLD and T2D who received their first prescription for either a GLP-1 RA or an SGLT2i between January 2010 and June 2023. We conducted a propensity score-matched (PSM) cohort study comparing new users of GLP-1 RAs and SGLT2is. The primary outcome was the risk of MALOs, a composite endpoint consisting of decompensated cirrhosis events, hepatocellular carcinoma, and liver transplantation. Secondary outcomes included all-cause mortality and individual components of the primary outcome. RESULTS This study included 15,176 pairs of patients treated with either a GLP-1 RA or a SGLT2i. The adjusted hazard ratio (HR) for MALO associated with GLP-1 RAs relative to SGLT2is was 0.84 (95% confidence interval [CI]: 0.73-0.97; incidence rate: 88.9 versus 105.3 events per 10,000 person-years), primarily driven by reduction in decompensated cirrhosis events (adjusted HR: 0.83, 95% CI: 0.71-0.96). GLP-1 RAs were associated with lower all-cause mortality (adjusted HR: 0.84, 95% CI: 0.75-0.94). CONCLUSION GLP-1 RAs are associated with better long-term liver outcomes compared to SGLT2is in patients with MASLD and T2D.
Collapse
Affiliation(s)
- Chia-Chih Kuo
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Min-Hsiang Chuang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chun-Hsien Li
- Department of Physical Medicine and Rehabilitation, Chi Mei Hospital, Tainan, Taiwan
| | - Ya-Wen Tsai
- Center for Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsing-Tao Kuo
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Cheng Lai
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
4
|
Li Y, Zhu B, Shi K, Lu Y, Zeng X, Li Y, Zhang Q, Feng Y, Wang X. Advances in intrahepatic and extrahepatic vascular dysregulations in cirrhotic portal hypertension. Front Med (Lausanne) 2025; 12:1515400. [PMID: 39958826 PMCID: PMC11825794 DOI: 10.3389/fmed.2025.1515400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Cirrhotic portal hypertension, the most prevalent and clinically significant complication of liver cirrhosis, manifests as elevated portal venous pressure and is associated with severe complications. Although much research on the mechanisms of portal hypertension has focused on liver fibrosis, less attention has been given to the role of intrahepatic and extrahepatic vascular dysfunction, particularly with respect to extrahepatic vasculature. While the role of hepatic fibrosis in cirrhotic portal hypertension is undeniable, the underlying mechanisms involving intrahepatic and extrahepatic vasculature are highly complex. Sinusoidal capillarization and endothelial dysfunction contribute to increased intrahepatic vascular resistance. Hemodynamic changes in the extrahepatic circulation, including splanchnic vasodilation and hyperdynamic circulation, play a significant role in the development of portal hypertension. Additionally, therapeutic strategies targeting these vascular mechanisms are diverse, including improvement of sinusoidal microcirculation, therapies targeting hepatic stellate cells activation, and pharmacological modulation of systemic vascular tone. Therefore, in this review, we will discuss the vascular-related mechanisms and treatment progress of portal hypertension in cirrhosis to provide a new theoretical basis and practical guidance for clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Feng
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Ilias I, Zabuliene L, Rizzo M. GLP-1 receptor agonists in diabetes and weight loss: the double-edged sword of innovation and risks. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2025; 5:1530811. [PMID: 39850851 PMCID: PMC11754396 DOI: 10.3389/fcdhc.2024.1530811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Hippokration General Hospital, Athens, Greece
| | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Guney-Coskun M, Basaranoglu M. Interplay of gut microbiota, glucagon-like peptide receptor agonists, and nutrition: New frontiers in metabolic dysfunction-associated steatotic liver disease therapy. World J Gastroenterol 2024; 30:4682-4688. [PMID: 39575401 PMCID: PMC11572635 DOI: 10.3748/wjg.v30.i43.4682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/31/2024] Open
Abstract
The gut-liver axis plays a crucial role in the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Key metabolites, including lipopolysaccharides, short-chain fatty acids (SCFAs), bile acids, and beneficial gut bacteria such as Bifidobacterium and Lactobacillus, are pivotal in this process. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) show promise in managing MASLD by promoting weight loss, enhancing insulin secretion, and improving liver health. They restore gut-liver axis functionality, and their effects are amplified through dietary modifications and gut microbiome-targeted therapies. Emerging research highlights the interplay between GLP-1 RAs and gut microbiota, indicating that the gut microbiome significantly influences therapeutic outcomes. Metabolites produced by gut bacteria, can stimulate glucagon-like peptide-1 (GLP-1) secretion, further improving metabolic health. Integrating dietary interventions with GLP-1 RA treatment may enhance liver health by modulating the gut microbiota-SCFAs-GLP-1 pathway. Future research is needed to understand personalized effects, with prebiotics and probiotics offering treatment avenues for MASLD.
Collapse
Affiliation(s)
- Merve Guney-Coskun
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Nutrition and Dietetics, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Metin Basaranoglu
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Türkiye
| |
Collapse
|
7
|
Cheng CH, Hao WR, Cheng TH. Role of intestinal glucagon-like peptide-1 in hypoglycemia response impairment in type 1 diabetes. World J Diabetes 2024; 15:2237-2241. [PMID: 39582559 PMCID: PMC11580576 DOI: 10.4239/wjd.v15.i11.2237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/16/2024] Open
Abstract
This study critically examines the novel findings presented by Jin et al, which explores the role of intestinal glucagon-like peptide-1 (GLP-1) in impaired counterregulatory responses to hypoglycemia in mice with type 1 diabetes. The study identifies intestinal GLP-1 as a significant determinant in the physiological responses to hypoglycemia, offering new insights into its potential implications for diabetes management. The editorial synthesizes these findings, discusses their relevance in the context of current diabetes research, and outlines potential avenues for future investigation of intestinal GLP-1 as a therapeutic target. This analysis underscores the need for continued research into the complex mechanisms underlying impaired hypoglycemia responses and highlights the potential of targeting intestinal GLP-1 pathways in therapeutic strategies for type 1 diabetes.
Collapse
Affiliation(s)
- Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404328, Taiwan
| |
Collapse
|
8
|
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Wei G, Wang Z, Ning Z. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28:427. [PMID: 39301250 PMCID: PMC11411594 DOI: 10.3892/etm.2024.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/03/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut-cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
Collapse
Affiliation(s)
- Li Lin
- Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shaowei Xiang
- Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yan Liu
- Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dingwen Shen
- Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xiaoping Yu
- Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Kequan Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jia Luo
- School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China
| | - Guilai Wei
- School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhiguo Wang
- Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
9
|
Tarnawski AS. Editor-in-Chief articles of choice and comments from January to June 2024. World J Gastroenterol 2024; 30:3875-3882. [PMID: 39350787 PMCID: PMC11438654 DOI: 10.3748/wjg.v30.i34.3875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
As the Editor-in-Chief of the World Journal of Gastroenterology , I carefully review all articles every week before a new issue’s online publication, including the title, clinical and research importance, originality, novelty, and ratings by the peer reviewers. Based on this review, I select the papers of choice and suggest pertinent changes (e.g. , in the title or text) to the company editors responsible for publication. This process, while time-consuming, is essential for assuring the quality of publications and highlighting important articles that readers may revisit.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Department of Gastroenterology Research, University of California Irvine and the Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, United States
| |
Collapse
|