1
|
Campbell O, Vanderwal T, Weber AM. Fractal-Based Analysis of fMRI BOLD Signal During Naturalistic Viewing Conditions. Front Physiol 2022; 12:809943. [PMID: 35087421 PMCID: PMC8787275 DOI: 10.3389/fphys.2021.809943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Temporal fractals are characterized by prominent scale-invariance and self-similarity across time scales. Monofractal analysis quantifies this scaling behavior in a single parameter, the Hurst exponent (H). Higher H reflects greater correlation in the signal structure, which is taken as being more fractal. Previous fMRI studies have observed lower H during conventional tasks relative to resting state conditions, and shown that H is negatively correlated with task difficulty and novelty. To date, no study has investigated the fractal dynamics of BOLD signal during naturalistic conditions. Methods: We performed fractal analysis on Human Connectome Project 7T fMRI data (n = 72, 41 females, mean age 29.46 ± 3.76 years) to compare H across movie-watching and rest. Results: In contrast to previous work using conventional tasks, we found higher H values for movie relative to rest (mean difference = 0.014; p = 5.279 × 10-7; 95% CI [0.009, 0.019]). H was significantly higher in movie than rest in the visual, somatomotor and dorsal attention networks, but was significantly lower during movie in the frontoparietal and default networks. We found no cross-condition differences in test-retest reliability of H. Finally, we found that H of movie-derived stimulus properties (e.g., luminance changes) were fractal whereas H of head motion estimates were non-fractal. Conclusions: Overall, our findings suggest that movie-watching induces fractal signal dynamics. In line with recent work characterizing connectivity-based brain state dynamics during movie-watching, we speculate that these fractal dynamics reflect the configuring and reconfiguring of brain states that occurs during naturalistic processing, and are markedly different than dynamics observed during conventional tasks.
Collapse
Affiliation(s)
- Olivia Campbell
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- British Columbia (BC) Children's Hospital Research Institute, UBC, Vancouver, BC, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Mark Weber
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,British Columbia (BC) Children's Hospital Research Institute, UBC, Vancouver, BC, Canada.,Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Department of Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Coey CA, Kallen RW, Chemero A, Richardson MJ. Exploring complexity matching and asynchrony dynamics in synchronized and syncopated task performances. Hum Mov Sci 2018; 62:81-104. [PMID: 30268998 DOI: 10.1016/j.humov.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022]
Abstract
When two people synchronize their rhythmic behaviors (e.g., finger tapping; walking) they match one another not only at a local scale of beat-to-beat intervals, but also at a global scale of the complex (fractal) patterns of variation in their interval series. This "complexity matching" had been demonstrated in a variety of timing behaviors, but the current study was designed to address two important gaps in previous research. First, very little was known about complexity matching outside of synchronization tasks. This was important because different modes are associated with differences in the strength of coordination and the fractal scaling of the task performance. Second, very little was known about the dynamics of the asynchrony series. This was important because asynchrony is a variable directly quantifying the coordination between the two timing behaviors and the task goal. So, the current study explored complexity matching in both synchronized and syncopated finger tapping tasks, and included analyses of the fractal scaling of the asynchrony series. Participants completed an interpersonal finger tapping task, in both synchronization and syncopation conditions. The magnitude of variation and the exact power law scaling of the tapping intervals were manipulated by having one participant tap in time with a metronome. Complexity matching was most stable when there was sufficient variation in the task behavior and when a persistent scaling dynamic was presented. There were, however, several interesting differences between the two coordination modes, in terms of the heterogeneity of the complexity matching effect and the scaling of the asynchronies. These findings raised a number of important points concerning how to approach and understand the interaction of inherently complex systems.
Collapse
|
3
|
Evidence of embodied social competence during conversation in high functioning children with autism spectrum disorder. PLoS One 2018; 13:e0193906. [PMID: 29505608 PMCID: PMC5837293 DOI: 10.1371/journal.pone.0193906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/21/2018] [Indexed: 11/29/2022] Open
Abstract
Even high functioning children with Autism Spectrum Disorder (ASD) exhibit impairments that affect their ability to carry out and maintain effective social interactions in multiple contexts. One aspect of subtle nonverbal communication that might play a role in this impairment is the whole-body motor coordination that naturally arises between people during conversation. The current study aimed to measure the time-dependent, coordinated whole-body movements between children with ASD and a clinician during a conversational exchange using tools of nonlinear dynamics. Given the influence that subtle interpersonal coordination has on social interaction feelings, we expected there to be important associations between the dynamic motor movement measures introduced in the current study and the measures used traditionally to categorize ASD impairment (ADOS-2, joint attention and theory of mind). The study found that children with ASD coordinated their bodily movements with a clinician, that these movements were complex and that the complexity of the children’s movements matched that of the clinician’s movements. Importantly, the degree of this bodily coordination was related to higher social cognitive ability. This suggests children with ASD are embodying some degree of social competence during conversations. This study demonstrates the importance of further investigating the subtle but important bodily movement coordination that occurs during social interaction in children with ASD.
Collapse
|
4
|
Kello CT. Editor's Introduction and Review: Coordination and Context in Cognitive Science. Top Cogn Sci 2017; 10:6-17. [PMID: 29115065 DOI: 10.1111/tops.12302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 06/14/2017] [Accepted: 08/04/2017] [Indexed: 11/28/2022]
Abstract
The role of coordination in cognitive science has been on the rise in recent years, in terms of coordination among neurons, coordination among sensory and motor systems, and coordination among individuals. Research has shown that coordination patterns corresponding to cognitive activities depend on the various contexts in which the underlying interactions are situated. The present issue of Topics in Cognitive Science centers on studies of coordination that address the role of context in shaping or interpreting dynamical patterns of human behavior. This introductory article reviews some of the prior literature leading up to current and future research on coordination and context in cognitive science.
Collapse
|
5
|
Coey CA, Washburn A, Hassebrock J, Richardson MJ. Complexity matching effects in bimanual and interpersonal syncopated finger tapping. Neurosci Lett 2016; 616:204-10. [PMID: 26840612 DOI: 10.1016/j.neulet.2016.01.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
The current study was designed to investigate complexity matching during syncopated behavioral coordination. Participants either tapped in (bimanual) syncopation using their two hands, or tapped in (interpersonal) syncopation with a partner, with each participant using one of their hands. The time series of inter-tap intervals (ITI) from each hand were submitted to fractal analysis, as well as to short-term and multi-timescale cross-correlation analyses. The results demonstrated that the fractal scaling of one hand's ITI was strongly correlated to that of the other hand, and this complexity matching effect was stronger in the bimanual condition than in the interpersonal condition. Moreover, the degree of complexity matching was predicted by the strength of short-term cross-correlation and the stability of the asynchrony between the two tapping series. These results suggest that complexity matching is not specific to the inphase synchronization tasks used in past research, but is a general result of coordination between complex systems.
Collapse
Affiliation(s)
- Charles A Coey
- Center for Cognition, Action and Perception, Department of Psychology, University of Cincinnati, 47 Corry Blvd, Edwards 1 Center, Cincinnati, OH 45221-0376, USA.
| | - Auriel Washburn
- Center for Cognition, Action and Perception, Department of Psychology, University of Cincinnati, 47 Corry Blvd, Edwards 1 Center, Cincinnati, OH 45221-0376, USA.
| | - Justin Hassebrock
- Department of Psychology, Miami University, 90 N. Patterson Ave, Oxford, OH 45056, USA.
| | - Michael J Richardson
- Center for Cognition, Action and Perception, Department of Psychology, University of Cincinnati, 47 Corry Blvd, Edwards 1 Center, Cincinnati, OH 45221-0376, USA.
| |
Collapse
|
6
|
Malone M, Castillo RD, Kloos H, Holden JG, Richardson MJ. Dynamic structure of joint-action stimulus-response activity. PLoS One 2014; 9:e89032. [PMID: 24558467 PMCID: PMC3928400 DOI: 10.1371/journal.pone.0089032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/20/2014] [Indexed: 11/18/2022] Open
Abstract
The mere presence of a co-actor can influence an individual’s response behavior. For instance, a social Simon effect has been observed when two individuals perform a Go/No-Go response to one of two stimuli in the presence of each other, but not when they perform the same task alone. Such effects are argued to provide evidence that individuals co-represent the task goals and the to-be-performed actions of a co-actor. Motivated by the complex-systems approach, the present study was designed to investigate an alternative hypothesis — that such joint-action effects are due to a dynamical (time-evolving) interpersonal coupling that operates to perturb the behavior of socially situated actors. To investigate this possibility, participants performed a standard Go/No-Go Simon task in joint and individual conditions. The dynamic structure of recorded reaction times was examined using fractal statistics and instantaneous cross-correlation. Consistent with our hypothesis that participants responding in a shared space would become behaviorally coupled, the analyses revealed that reaction times in the joint condition displayed decreased fractal structure (indicative of interpersonal perturbation processes modulating ongoing participant behavior) compared to the individual condition, and were more correlated across a range of time-scales compared to the reaction times of pseudo-pair controls. Collectively, the findings imply that dynamic processes might underlie social stimulus-response compatibility effects and shape joint cognitive processes in general.
Collapse
Affiliation(s)
- MaryLauren Malone
- Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Ramon D. Castillo
- Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
- Universidad de Talca, Talca, Chile
| | - Heidi Kloos
- Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John G. Holden
- Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael J. Richardson
- Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|