Abstract
Current models of trans-saccadic perception propose that, after a saccade, the saccade target object must be localized among objects near the landing position. However, the nature of the attentional mechanisms supporting this process is currently under debate. In the present study, we tested whether surface properties of the saccade target object automatically bias post-saccadic selection using a variant of the visual search task. Participants executed a saccade to a shape-singleton target in a circular array. During this primary saccade, the array sometimes rotated so that the eyes landed between the target and an adjacent distractor, requiring gaze correction. In addition, each object in the array had an incidental color value. On Switch trials, the target and adjacent distractor switched colors. The accuracy and latency of gaze correction to the target (measures that provide a direct index of target localization) were compared with a control condition in which no color switch occurred (No-switch trials). Gaze correction to the target was substantially impaired in the Switch condition. This result was obtained even when participants had substantial incentive to avoid encoding the color of the saccade target. In addition, similar effects were observed when the roles of the two feature dimensions (color and shape) were reversed. The results indicate that saccade target features are automatically encoded before a saccade, are retained in visual working memory across the saccade, and instantiate a feature-based selection operation when the eyes land, biasing attention toward objects that match target features.
Collapse