1
|
Lin Y, Hsu CC, Lin CJ, Kuroda R, Chiang DL, Lai F, Wu SI. Neurobiological mechanisms of dialectical behavior therapy and Morita therapy, two psychotherapies inspired by Zen. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02644-3. [PMID: 37145166 DOI: 10.1007/s00702-023-02644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Psychotherapy is a learning process. Updating the prediction models of the brain may be the mechanism underlying psychotherapeutic changes. Although developed in different eras and cultures, dialectical behavior therapy (DBT) and Morita therapy are influenced by Zen principles, and both emphasize the acceptance of reality and suffering. This article reviews these two treatments, their common and distinct therapeutic factors, and their neuroscientific implications. Additionally, it proposes a framework that includes the predictive function of the mind, constructed emotions, mindfulness, therapeutic relationship, and changes enabled via reward predictions. Brain networks, including the Default Mode Network (DMN), amygdala, fear circuitry, and reward pathways, contribute to the constructive process of brain predictions. Both treatments target the assimilation of prediction errors, gradual reorganization of predictive models, and creation of a life with step-by-step constructive rewards. By elucidating the possible neurobiological mechanisms of these psychotherapeutic techniques, this article is expected to serve as the first step towards filling the cultural gap and creating more teaching methods based on these concepts.
Collapse
Affiliation(s)
- Ying Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan
| | - Chen-Chi Hsu
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chen-Ju Lin
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan
- Institute of Health and Welfare Policy, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Reiko Kuroda
- Division for Environment, Health and Safety, The University of Tokyo, Tokyo, Japan
| | - Dai-Lun Chiang
- Financial Technology Applications Program, Ming-Chuan University, Taoyuan, Taiwan
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shu-I Wu
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Noise Induced Depression-Like Behavior, Neuroinflammation and Synaptic Plasticity Impairments: The Protective Effects of Luteolin. Neurochem Res 2022; 47:3318-3330. [PMID: 35978229 DOI: 10.1007/s11064-022-03683-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022]
Abstract
Noise is a kind of sound that causes agitation and harms human health. Studies have shown that noise can lead to neuroinflammation, damage to synaptic plasticity and altered levels of neurotransmitters that may result in depression. The present study demonstrated that luteolin exerted antidepressant-like effects by improving neuroinflammation in a mouse model of noise-induced depression. Luteolin significantly alleviated noise-induced depression-like behavior. Notably, luteolin treatment not only remarkably ameliorated noise-induced inflammation in the hippocampus and prefrontal cortex, but also increased synapsin. Furthermore, luteolin treatment significantly increased the contents of serum 5-hydroxytryptamine and norepinephrine in noise-induced mice. In sum, luteolin exerts antidepressant effects indepression-like mice caused by noise, which can serve as a potential agent for the treatment of chronic noise-induced depression.
Collapse
|
4
|
Peng Z, Zhang C, Yan L, Zhang Y, Yang Z, Wang J, Song C. EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int J Mol Sci 2020; 21:ijms21051769. [PMID: 32150824 PMCID: PMC7084382 DOI: 10.3390/ijms21051769] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical evidence indicated that eicosapentaenoic acid (EPA) was more effective than docosahexaenoic acid (DHA) in depression treatment. However, possible mechanisms remain unclear. Here, a chronic unpredictable mild stress (CUMS)-induced model of depression was used to compare EPA and DHA anti-depressant effects. After EPA or DHA feeding, depression-like behavior, brain n-3/n-6 PUFAs profile, serum corticosterone and cholesterol concentration, hippocampal neurotransmitters, microglial and astrocyte related function, as well as neuronal apoptosis and survival signaling pathways were studied. EPA was more effective than DHA to ameliorate CUMS-induced body weight loss, and depression-like behaviors, such as increasing sucrose preference, shortening immobility time and increasing locomotor activity. CUMS-induced corticosterone elevation was reversed by bother fatty acids, while increased cholesterol was only reduced by EPA supplement. Lower hippocampal noradrenaline and 5-hydroxytryptamine concentrations in CUMS rats were also reversed by both EPA and DHA supplement. However, even though CUMS-induced microglial activation and associated increased IL-1β were inhibited by both EPA and DHA supplement, increased IL-6 and TNF-α levels were only reduced by EPA. Compared to DHA, EPA could improve CUMS-induced suppressive astrocyte biomarkers and associated BDNF-TrkB signaling. Moreover, EPA was more effective than DHA to attenuate CUMS-induced higher hippocampal NGF, GDNF, NF-κB, p38, p75, and bax expressions, but reversed bcl-2 reduction. This study for the first time revealed the mechanisms by which EPA was more powerful than DHA in anti-inflammation, normalizing astrocyte and neurotrophin function and regulating NF-κB, p38 and apoptosis signaling. These findings reveal the different mechanisms of EPA and DHA in clinical depression treatment.
Collapse
Affiliation(s)
- Zhilan Peng
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Yan
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence:
| |
Collapse
|
5
|
Roberts KH, Manaligod MGM, Ross CJD, Müller DJ, Wieser MJ, Todd RM. Affectively Biased Competition: Sustained Attention is Tuned to Rewarding Expressions and is Not Modulated by Norepinephrine Receptor Gene Variant. COLLABRA: PSYCHOLOGY 2019. [DOI: 10.1525/collabra.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is well established that emotionally salient stimuli evoke greater visual cortex activation than neutral ones, and can distract attention from competing tasks. Yet less is known about underlying neurobiological processes. As a proxy of population level biased competition, EEG steady-state visual evoked potentials are sensitive to competition effects from salient stimuli. Here we wished to examine whether individual differences in norepinephrine activity play a role in emotionally-biased competition.
Our previous research has found robust effects of a common variation in the ADRA2B gene, coding for alpha2B norepinephrine (NE) receptors, on emotional modulation of attention and memory. In the present study, EEG was collected while 87 carriers of the ADRA2B deletion variant and 95 non-carriers (final sample) performed a change detection task in which target gratings (gabor patches) were superimposed directly over angry, happy, and neutral faces. Participants indicated the number of phase changes (0–3) in the target. Overlapping targets and distractors were flickered at a distinct driving frequencies. Relative EEG power for faces vs. targets at the driving frequency served as an index of cortical resources allocated to each of the competing stimuli. Deletion carriers and non-carriers were randomly assigned to Discovery and Replication samples and reliability of results across samples was assessed before the groups were combined for greater power.
Overall happy faces evoked higher competition than angry or neutral faces; however, we observed no hypothesized effects of ADRA2B. Increased competition from happy faces was not due to the effect of low-level visual features or individuals low in social anxiety. Our results indicate that emotionally biased competition during sustained attention, while reliably observed in young adults, is not influenced by commonly observed individual differences linked to NE receptor function. They further indicate an overall pattern of affectively-biased competition for happy faces, which we interpret in relation to previously observed boundary conditions.
Collapse
Affiliation(s)
- Kevin H. Roberts
- Department of Psychology, University of British Columbia, Vancouver, BC, CA
| | | | - Colin J. D. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, CA
| | - Daniel J. Müller
- Department of Psychiatry, University of Toronto and Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, ON, CA
| | - Matthias J. Wieser
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, NL
| | - Rebecca M. Todd
- Department of Psychology, University of British Columbia, Vancouver, BC, CA
- Centre for Brain Health, University of British Columbia, Vancouver, BC, CA
| |
Collapse
|