1
|
Guo X, Xu Y, Meng Y, Lian H, He J, Zhang R, Xu J, Wang H, Xu S, Cai W, Xiao L, Su T, Tang Y. Acute Aerobic Exercise Intensity on Working Memory and Vigilance After Nap Deprivation: Effects of Low-Intensity Deserve Attention. Nat Sci Sleep 2024; 16:1431-1449. [PMID: 39318397 PMCID: PMC11420903 DOI: 10.2147/nss.s471930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Background Napping deprivation in habitual nappers leads to cognitive impairment. The ameliorative effect of acute aerobic exercise has been demonstrated for this post-cognitive impairment. However, it is still unclear which intensity of aerobic exercise is the most effective and how long this improvement can be sustained. Methods Fifty-eight healthy adults with a chronic napping habit were randomly assigned to four intervention groups after undergoing nap deprivation: a sedentary control group, a low-intensity exercise group (50-59% maximum heart rate, HRmax), a moderate-intensity exercise group (60-69% HRmax), and a high-intensity exercise group (70-79% HRmax). Working memory (N-back task), vigilance (Psychomotor Vigilance Task, PVT), and response inhibitory capacity (Go/NoGo task) were measured. Results Regression analyses showed a quadratic trend between exercise intensity and working memory reaction time and accuracy (F =3.297-5.769, p < 0.05, R2 =10.7-18.9%). The effects of exercise were optimal at low-intensity. There was a significant quadratic trend between exercise intensity and PVT lapse (F =4.314, p =0.042, R² =7.2%). The effect of exercise increased with higher intensity. Prolonged observation found that the effect of low-intensity exercise on working memory was maintained for 2 hours. Conclusion The effect of low-intensity exercise might be underestimated. Low-intensity exercise significantly improved working memory performance, and the effects could be maintained throughout the afternoon. In contrast, the effects of high-intensity exercise were unlikely to be maintained and might even have negative effects. Future researchers can broaden the categories of participants to enhance the external validity and collect diverse physiological indicators to explore related physiological mechanisms.
Collapse
Affiliation(s)
- Xin Guo
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Ying Xu
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Yao Meng
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
- Department of Diving and Hyperbaric Medical Research, Naval Special Medical Center, Naval Medical University, Shanghai, People's Republic of China
| | - Hao Lian
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Jingwen He
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Ruike Zhang
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Jingzhou Xu
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Hao Wang
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Shuyu Xu
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Wenpeng Cai
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Lei Xiao
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Tong Su
- Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Yunxiang Tang
- Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Gong L, Wang M, Ye C, Liu Q. The impact of sleep quality on visual working memory varied with the duration of maintenance. Front Psychol 2024; 15:1404989. [PMID: 38979074 PMCID: PMC11229051 DOI: 10.3389/fpsyg.2024.1404989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Objective Sleep quality can affect the performance of visual working memory. However, the effect of sleep quality on the maintenance stage, which is the key to maintain the quality and efficiency of visual working memory representation, remains unclear. This study is the first to explore the effect of sleep quality on the maintenance of visual working memory information. Method 60 healthy college students completed the Pittsburgh Sleep Quality Index (PSQI) and color recall task of visual working memory. A mixed experimental design of sleep quality (high or low) and delay duration (1, 4, or 6 s) was used to assess the effect of sleep quality on the maintenance phase of visual working memory. Results The main effects of sleep quality were significant on visual working memory quantity, precision and offset indexes. Among the quantity index, the interaction between sleep quality and delay duration was also significant. This suggests that prolonging the delay time in the maintenance phase leads to difficulty in maintaining attention to the task for those with lower sleep quality, which results in poorer working memory quantitative representations. Conclusion Increases in the delay duration of the maintenance phase in visual working memory intensify the impact of sleep quality on task performance. Our study provides evidence to reveal the relationship between sleep quality and visual working memory and offers recommendations for improving sleep quality and cognitive functioning in individuals.
Collapse
Affiliation(s)
- Li Gong
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- School of Education, Anyang Normal University, Anyang, China
| | - Mengwei Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Chaoxiong Ye
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
3
|
Shibasaki S, Kishino T, Sei Y, Harashima K, Sakata K, Ohnishi H, Watanabe T. Sex-dependent impact of a short rest after lunch on hemodynamics as assessed by Doppler sonography. Eur J Appl Physiol 2024; 124:873-880. [PMID: 37755579 DOI: 10.1007/s00421-023-05316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE Taking a short rest after lunch suppresses increases in blood flow to the digestive organs and maintains blood flow to the brain in the afternoon, possibly providing beneficial effects in preventing post-prandial drowsiness. The present study investigated sex-dependent influences on changes in hemodynamics produced by taking a short rest after lunch. METHODS Subjects comprised 20 healthy young adults (10 men, 10 women; mean age 21 ± 1 years). Doppler sonography was performed to measure blood flow in the superior mesenteric artery (SMA) and common carotid artery (CCA) before and after lunch every hour on each day, with and without a 15-min rest with eyes closed after lunch. Blood pressure and heart rate (HR) were also measured. RESULTS For both men and women, peak systolic velocity (PSV) in the SMA was suppressed by taking a rest. PSV in the CCA in men was increased at 0.5 h after lunch in the resting condition but was decreased in the non-resting condition (median 109%, interquartile range [IQR] 102-120% vs. median 98%, IQR 90-107%; P = 0.037). No such differences were observed in women. Although post-prandial increases in HR were observed in women, a similar increase was only found for men in the resting condition. CONCLUSION An increase in CCA blood flow was observed only in men. The present study suggests that a short rest after lunch could better promote the maintenance of blood flow to the brain in men than in women.
Collapse
Affiliation(s)
- Shohei Shibasaki
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Tomonori Kishino
- Department of Clinical Engineering, Kyorin University Faculty of Health Sciences, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
| | - Yoriko Sei
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Keiichiro Harashima
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Konomi Sakata
- Department of Clinical Engineering, Kyorin University Faculty of Health Sciences, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Lockhart HA, Dube B, MacDonald KJ, Al-Aidroos N, Emrich SM. Limitations on flexible allocation of visual short-term memory resources with multiple levels of goal-directed attentional prioritization. Atten Percept Psychophys 2024; 86:159-170. [PMID: 37985598 DOI: 10.3758/s13414-023-02813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Studies suggest that visual short-term memory (VSTM) is a continuous resource that can be flexibly allocated using probabilistic cues that indicate test likelihood (i.e., goal-directed attentional priority to those items). Previous studies using simultaneous cues have not examined this flexible allocation beyond two distinct levels of priority. Moreover, previous studies have not examined whether there are individual differences in the ability to flexibly allocate VSTM resources, as well as whether this ability benefits from practice. The current study used a continuous report procedure to examine whether participants can use up to three levels of attentional priority to allocate VSTM resources via simultaneous probabilistic spatial cues. Three experiments were performed with differing priority levels, cues, and cue presentation times. Group level analysis demonstrated flexible allocation of VSTM resources; however, there was limited evidence that participants could use three goal-directed priority levels. A temporal analysis suggested that task fatigue, rather than practice effects, may interact with item priority. A Bayesian individual-differences analysis revealed that a minority of participants were using three levels of attentional priority, demonstrating that, while possible, it is not the predominant pattern of behaviour. Thus, we provided evidence that flexible allocation to three attention levels is possible under simultaneous cuing conditions for a minority of participants. Flexible allocation to three categories may be interpreted as a skill of high-performing participants akin to high memory capacity.
Collapse
Affiliation(s)
- Holly A Lockhart
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada.
| | - Blaire Dube
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada
- Department of Psychology, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, NL, A1C 5S7, Canada
| | - Kevin J MacDonald
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada
| | - Naseem Al-Aidroos
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Stephen M Emrich
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
5
|
Wofford N, Ceballos N, Elkins G, Westerberg CE. A brief nap during an acute stressor improves negative affect. J Sleep Res 2022; 31:e13701. [PMID: 35851731 PMCID: PMC9786543 DOI: 10.1111/jsr.13701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
Abstract
Overnight sleep can reduce perceived stress, and improve associated cognitive disruptions and negative affect after an acute stressor. Whether a brief nap can also bestow these benefits in a non-sleep-restricted population is currently unknown. In this study that used a between-subjects design, stress was triggered by administering a modified Trier Social Stress Test to two groups of participants (nap [n = 29], wake [n = 41]). All participants were instructed they would give a speech during the study but the topic would be withheld until later, and then completed a math task. After a 40-min break in which participants watched a neutral video or took a nap monitored with electroencephalography, stress was reinforced by presenting the speech topics and giving participants a 10-min preparation period. Next, instead of giving a speech, the study ended and participants were debriefed. Negative affect, perceived stress and working memory were measured at multiple time points before and after the break. Both groups showed lower perceived stress and improved working memory after the break than before, but a nap did not confer additional benefits for perceived stress or working memory beyond taking a break. However, the nap group exhibited lower negative affect after the break than the wake group, and only the nap group showed a reduction in negative affect compared with initial negative affect levels. These results indicate a nap can improve negative emotions accompanying a stressor to a greater extent than taking a break, and suggest that brief naps may be a useful way to improve mood while experiencing an acute stressor.
Collapse
Affiliation(s)
- Nathan Wofford
- Department of PsychologyTexas State UniversitySan MarcosTexasUSA,Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | - Natalie Ceballos
- Department of PsychologyTexas State UniversitySan MarcosTexasUSA
| | - Gary Elkins
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | | |
Collapse
|
6
|
Chen PC, Zhang J, Thayer JF, Mednick SC. Understanding the roles of central and autonomic activity during sleep in the improvement of working memory and episodic memory. Proc Natl Acad Sci U S A 2022; 119:e2123417119. [PMID: 36279428 PMCID: PMC9636982 DOI: 10.1073/pnas.2123417119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The last decade has seen significant progress in identifying sleep mechanisms that support cognition. Most of these studies focus on the link between electrophysiological events of the central nervous system during sleep and improvements in different cognitive domains, while the dynamic shifts of the autonomic nervous system across sleep have been largely overlooked. Recent studies, however, have identified significant contributions of autonomic inputs during sleep to cognition. Yet, there remain considerable gaps in understanding how central and autonomic systems work together during sleep to facilitate cognitive improvement. In this article we examine the evidence for the independent and interactive roles of central and autonomic activities during sleep and wake in cognitive processing. We specifically focus on the prefrontal-subcortical structures supporting working memory and mechanisms underlying the formation of hippocampal-dependent episodic memory. Our Slow Oscillation Switch Model identifies separate and competing underlying mechanisms supporting the two memory domains at the synaptic, systems, and behavioral levels. We propose that sleep is a competitive arena in which both memory domains vie for limited resources, experimentally demonstrated when boosting one system leads to a functional trade-off in electrophysiological and behavioral outcomes. As these findings inevitably lead to further questions, we suggest areas of future research to better understand how the brain and body interact to support a wide range of cognitive domains during a single sleep episode.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Zhang
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| | - Julian F. Thayer
- Department of Psychological Sciences, University of California, Irvine, CA 92697
| | - Sara C. Mednick
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
7
|
Ru T, Qian L, Chen Q, Sun H, Zhou G. Effects of an afternoon nap on sustained attention and working memory: The role of physiological arousal and sleep variables. Int J Psychophysiol 2022; 179:21-29. [PMID: 35753563 DOI: 10.1016/j.ijpsycho.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022]
Abstract
Taking a short midday nap has been associated with higher alertness and better cognitive task performance. Yet, the mechanisms associated with nap-dependent performance enhancement are unclear. The current study was conducted to explore the impact of physiological arousal during cognitive task and sleep architecture during a pre-task nap on post-nap behavioral outcomes. A within-subjects design (N = 18) was employed, in which participants either took a nap or remained awake for 40 min during the post-lunch period. The psychomotor vigilance test (PVT) and n-back task were administered to assess sustained attention and working memory, respectively, with each task including one block of easy trials and one block of difficult trials. Results showed that a short midday nap improved sustained attention but not working memory. In addition, a midday nap induced lower physiological arousal during the performance on both cognitive tasks, with relatively higher delta and lower beta activity. The relative power of theta and alpha were positively correlated with performance on the easy PVT, whereas the alpha power was negatively correlated with performance on the difficult PVT, and the theta power was negatively correlated with reaction speed in the n-back task regardless of the task difficulty. Meanwhile, the shorter total sleep time and longer time of wake after sleep onset were associated with the faster overall reaction speed in PVT easy trials. These findings suggested that both changes in physiological arousal and sleep variables might account for changes in task performance after a short midday nap.
Collapse
Affiliation(s)
- Taotao Ru
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Liu Qian
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qingwei Chen
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Hailing Sun
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
8
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
9
|
Competitive dynamics underlie cognitive improvements during sleep. Proc Natl Acad Sci U S A 2021; 118:2109339118. [PMID: 34903651 PMCID: PMC8713802 DOI: 10.1073/pnas.2109339118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep facilitates both long-term episodic memory consolidation and short-term working memory functioning. However, the mechanism by which the sleeping brain performs both complex feats and which sleep features are associated with these processes remain unclear. Using a pharmacological approach, we demonstrate that long-term and working memory are served by distinct offline neural mechanisms and that these mechanisms are mutually antagonistic. We propose a sleep switch model in which the brain toggles between the two memory processes via a complex interaction at the synaptic, systems, and mechanistic level with implications for research on cognitive disturbances observed in neurodegenerative disorders such as Alzheimer’s and Parkinson's disease, both of which involve the decline of sleep. We provide evidence that human sleep is a competitive arena in which cognitive domains vie for limited resources. Using pharmacology and effective connectivity analysis, we demonstrate that long-term memory and working memory are served by distinct offline neural mechanisms that are mutually antagonistic. Specifically, we administered zolpidem to increase central sigma activity and demonstrated targeted suppression of autonomic vagal activity. With effective connectivity, we determined the central activity has greater causal influence over autonomic activity, and the magnitude of this influence during sleep produced a behavioral trade-off between offline long-term and working memory processing. These findings suggest a sleep switch mechanism that toggles between central sigma-dependent long-term memory and autonomic vagal-dependent working memory processing.
Collapse
|
10
|
Possible effects of short rest after lunch on hemodynamics in the afternoon. Eur J Appl Physiol 2021; 122:523-530. [PMID: 34846579 DOI: 10.1007/s00421-021-04852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Drowsiness is often experienced in the afternoon after lunch. Decreases in blood flow to the brain secondary to increases in blood flow to the digestive organs after food intake could represent an underlying cause. As various beneficial effects of short rests on mental activities have been reported, the present study investigated hemodynamics using Doppler sonography of the common carotid artery (CCA) and superior mesenteric artery (SMA) after lunch, comparing resting and non-resting cases. METHODS Subjects comprised 24 healthy young adults (10 men, 14 women; mean age 22 ± 1 years). Sonography was performed to measure blood flow before and after lunch on each day, with and without a 15-min lying rest with eyes closed after lunch in each subject. RESULTS The timing of the peak velocity-time integral in the SMA in resting cases was delayed to 1.5 h after lunch compared to 0.5 h in non-resting cases. Although end-diastolic velocity in the CCA decreased after lunch, this decrease was suppressed in resting cases compared to non-resting cases even 4.5 h after lunch (median 96%, interquartile range [IQR] 83-102% vs. median 87%, IQR 77-92%; P = 0.037). Mean velocity (MV) in the CCA maintained unchanged after lunch in resting cases (P = 0.318), whereas non-resting cases showed decreased MV after lunch (P < 0.001). CONCLUSION These findings suggest that a short lying rest with eyes closed suppresses increases in blood flow to the digestive organ and maintains blood flow to the brain after lunch. These hemodynamic changes might help explain the benefits of afternoon rests.
Collapse
|
11
|
Santos JS, Pereira SIR, Louzada FM. Chronic sleep restriction triggers inadequate napping habits in adolescents: a population-based study. Sleep Med 2021; 83:115-122. [PMID: 33991891 DOI: 10.1016/j.sleep.2021.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The prevalence of chronic sleep restriction during adolescence is a major public health issue. Napping has been adopted to alleviate sleep pressure complaints. However, it also has the potential to amplify sleep restriction due to a vicious cycle triggered by delayed sleep times. The aim of this study was to investigate sleep and napping habits in a sample of Brazilian adolescents. METHODS This study enrolled 1554 high school students and included the evaluation of sleep times, daytime sleepiness, sleep quality, and circadian preference. The students were asked about their napping routine, ie its frequency and duration per week. RESULTS The adolescent sleep recommendation was achieved by only 27.6% of the sample. Napping habit was reported by 58.1%, with 36.2% of nappers informing naps in 1-2 times per week. Prolonged naps were reported by 44.9% of nappers. Nappers had later median bedtime (23:30) and reduced time in bed (TIB) (median = 07:00 h) compared to non-nappers. The frequency of nappers who did not achieve satisfactory TIB was higher than non-nappers. In addition, nappers reported increased daytime sleepiness and poor sleep quality. Later bedtimes and reduced TIB were associated with longer nap duration. Increased sleepiness and poor sleep quality were linked to a higher nap frequency. CONCLUSIONS This exploratory survey demonstrated a severe sleep restriction faced by Brazilian adolescents. Napping can be an efficient strategy to counteract sleep restriction, but it needs to be adopted with caution due to the detrimental effects of frequent and prolonged naps on nocturnal sleep.
Collapse
Affiliation(s)
- Jefferson Souza Santos
- Human Chronobiology Laboratory, Department of Physiology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Sofia Isabel Ribeiro Pereira
- Brain Research Imaging Center, School of Psychology, Cardiff University, Cardiff, Wales, CF24-4HQ, United Kingdom.
| | - Fernando Mazzilli Louzada
- Human Chronobiology Laboratory, Department of Physiology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
12
|
The Relationship between Mindfulness and Sleep Quality is Mediated by Emotion Regulation. PSYCHIATRY INTERNATIONAL 2020. [DOI: 10.3390/psychiatryint1020007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Sleep is critical to a person’s overall physical and mental health. The current study investigated the relationship between mindfulness and sleep quality, to determine if this relationship is influenced by emotion regulation and perceived stress. Method: Three hundred sixty-seven undergraduate students responded to five self-report measures, (1) The Cognitive and Affective Mindfulness Scale (CAMS-R), (2) The Impact of Event Scale (IES-R), (3) The Five Facet Mindfulness Questionnaire (FFMQ), (4) The Emotion Regulation Questionnaire (ERQ), and (5) The Pittsburgh Sleep Quality Index (PSQI). Results: Results revealed (1) sleep quality was predicted by the presence of hyperarousal, acting with awareness, and the CAMS-R, (2) the Impact of Event Scale was moderately positively correlated with a person’s global score on the Pittsburgh Sleep Quality Index, and (3) the relationship between mindfulness and sleep quality was mediated by hyperarousal. Conclusions: Together, our findings suggest that higher levels of intrusive thoughts, avoidance, and hyperarousal are correlated with lower overall sleep quality, and the use of mindfulness techniques such as acting with awareness and being non-reacting to negative thoughts or hyperarousal may help predict an individual’s sleep quality.
Collapse
|
13
|
Liang SF, Shih YH, Hu YH, Kuo CE. A Method for Napping Time Recommendation Using Electrical Brain Activity. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2020.2991176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Chen PC, Whitehurst LN, Naji M, Mednick SC. Autonomic/central coupling benefits working memory in healthy young adults. Neurobiol Learn Mem 2020; 173:107267. [PMID: 32535198 DOI: 10.1016/j.nlm.2020.107267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/01/2023]
Abstract
Working memory (WM) is an executive function that can improve with training. However, the precise mechanism for this improvement is not known. Studies have shown greater WM gains after a period of sleep than a similar period of wake, and correlations between WM improvement and slow wave activity (SWA; 0.5-1 Hz) during slow wave sleep (SWS). A different body of literature has suggested an important role for autonomic activity during wake for WM. A recent study from our group reported that the temporal coupling of Autonomic/CentralEvents (ACEs) during sleep was associated with memory consolidation. We found that heart rate bursts (HR bursts) during non-rapid eye movement (NREM) sleep are accompanied by increases in SWA and sigma (12-15 Hz) power, as well as increases in the high-frequency (HF) component of the RR interval, reflecting vagal rebound. In addition, ACEs predict long-term, episodic memory improvement. Building on these previous results, we examined whether ACEs also contribute to gains in WM. We tested 104 young adults in an operation span task (OSPAN) in the morning and evening, with either a nap (n = 53; with electroencephalography (EEG) and electrocardiography (ECG)) or wake (n = 51) between testing sessions. We identified HR bursts in the ECG and replicated the increases in SWA and sigma prior to peak of the HR burst, as well as vagal rebound after the peak. Furthermore, we showed sleep-dependent WM improvement, which was predicted by ACE activity. Using regression analyses, we discovered that significantly more variance in WM improvement could be explained with ACE variables than with overall sleep activity not time-locked with ECG. These results provide the first evidence that coordinated autonomic and central events play a significant role in sleep-related WM improvement and implicate the potential of autonomic interventions during sleep for cognitive enhancement.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Department of Cognitive Science, University of California, Irvine USA
| | | | - Mohsen Naji
- Department of Medicine, University of California, San Diego, CA, USA
| | - Sara C Mednick
- Department of Cognitive Science, University of California, Irvine USA.
| |
Collapse
|
15
|
Kordestani-Moghadam P, Nasehi M, Khodagholi F, Vaseghi S, Zarrindast MR, Khani M. The fluctuations of metabotropic glutamate receptor subtype 5 (mGluR5) in the amygdala in fear conditioning model of male Wistar rats following sleep deprivation, reverse circadian and napping. Brain Res 2020; 1734:146739. [PMID: 32087111 DOI: 10.1016/j.brainres.2020.146739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Sleep is involved in metabolic system, mental health and cognitive functions. Evidence shows that sleep deprivation (SD) negatively affects mental health and impairs cognitive functions, including learning and memory. Furthermore, the metabotropic glutamate receptor subtype 5 (mGluR5) is a metabolic biomarker, which is affected by various conditions, including stress, sleep deprivation, and cognitive and psychiatric disorders. In this research, we investigated the effect of SD and reverse circadian (RC), and two models of napping (continuous and non-continuous) combined with SD or RC on fear-conditioning memory, anxiety-like behavior and mGluR5 fluctuations in the amygdala. 64 male Wistar rats were used in this study. The water box apparatus was used to induce SD/RC for 48 h, and fear-conditioning memory apparatus was used to assess fear memory. The results showed, fear-conditioning memory was impaired following SD and RC, especially in contextual stage. However, anxiety-like behavior was increased. Furthermore, mGluR5 was increased in the left amygdala more than the right amygdala. Additionally, continuous napping significantly improved fear-conditioning memory, especially freezing behavior. In conclusion, following SD and RC, fear-conditioning memory in contextual stage is more vulnerable than in auditory stage. Furthermore, increase in anxiety-like behavior is related to increase in the activity of left amygdala and mGluR5 receptors.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mojgan Khani
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|