2
|
Qin Q, Fu L, Wang R, Lyu J, Ma H, Zhan M, Zhou A, Wang F, Zuo X, Wei C. Prominent Striatum Amyloid Retention in Early-Onset Familial Alzheimer's Disease With PSEN1 Mutations: A Pilot PET/MR Study. Front Aging Neurosci 2021; 13:732159. [PMID: 34603009 PMCID: PMC8480470 DOI: 10.3389/fnagi.2021.732159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: With the advancements of amyloid imaging in recent years, this new imaging diagnostic method has aroused great interest from researchers. Till now, little is known regarding amyloid deposition specialty in patients with early-onset familial Alzheimer's disease (EOFAD), and even less is known about its role in cognitive impairments. Objectives: Our study aimed to evaluate the amyloid deposition in five patients with EOFAD, 15 patients with late-onset sporadic AD, and 12 healthy subjects utilizing 11C-labeled Pittsburgh compound-B (11C-PiB) amyloid PET imaging. Moreover, we figured out the correlation between striatal and cortical standardized uptake value ratios (SUVRs). We also investigated the correlation between 11C-PiB retention and cognitive presentation. Results: All patients with EOFAD showed high amyloid deposition in the striatum, a pattern that is not usually seen in patients with late-onset sporadic AD. The SUVR in the striatum, especially in the amygdala, showed significant correlations with cortex SUVR in EOFAD. However, neither striatal nor cortical 11C-PiB retention was related to cognitive decline. Conclusions: The amyloid distribution in patients with EOFAD differs from late-onset sporadic AD, with higher amyloid deposits in the striatum. Our study also demonstrated positive correlations in 11C-PiB retention between the striatum and other cortical areas. We revealed that the distribution of amyloid in the brain is not random but diffuses following the functional and anatomical connections. However, the degree and pattern of amyloid deposition were not correlated with cognitive deficits.
Collapse
Affiliation(s)
- Qi Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Nuclear Medicine, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Huixuan Ma
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| | - Minmin Zhan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| | - Fen Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| | - Xiumei Zuo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| |
Collapse
|
3
|
Du Y, Wang Y, Yu M, Tian X, Liu J. Sex-Specific Functional Connectivity in the Reward Network Related to Distinct Gender Roles. Front Hum Neurosci 2021; 14:593787. [PMID: 33505258 PMCID: PMC7831777 DOI: 10.3389/fnhum.2020.593787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Gender roles are anti-dichotomous and malleable social constructs that should theoretically be constructed independently from biological sex. However, it is unclear whether and how the factor of sex is related to neural mechanisms involved in social constructions of gender roles. Thus, the present study aimed to investigate sex specificity in gender role constructions and the corresponding underlying neural mechanisms. We measured gender role orientation using the Bem Sex-Role Inventory, used a voxel-based global brain connectivity method based on resting-state functional magnetic resonance imaging to characterize the within-network connectivity in the brain reward network, and analyzed how the integration of the reward network is related to gender role scores between sex groups. An omnibus analysis of voxel-wise global brain connectivity values within a two-level linear mixed model revealed that in female participants, femininity scores were positively associated with integration in the posterior orbitofrontal cortex and subcallosal cortex, whereas masculinity scores were positively associated with integration in the frontal pole. By contrast, in male participants, masculinity was negatively correlated with integration in the nucleus accumbens and subcallosal cortex. For the first time, the present study revealed the sex-specific neural mechanisms underlying distinct gender roles, which elucidates the process of gender construction from the perspective of the interaction between reward sensitivity and social reinforcement.
Collapse
Affiliation(s)
- Yin Du
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yinan Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Mengxia Yu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xue Tian
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jia Liu
- Department of Psychology, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|