1
|
Herrera C, Whittle N, Leek MR, Brodbeck C, Lee G, Barcenas C, Barnes S, Holshouser B, Yi A, Venezia JH. Cortical networks for recognition of speech with simultaneous talkers. Hear Res 2023; 437:108856. [PMID: 37531847 DOI: 10.1016/j.heares.2023.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The relative contributions of superior temporal vs. inferior frontal and parietal networks to recognition of speech in a background of competing speech remain unclear, although the contributions themselves are well established. Here, we use fMRI with spectrotemporal modulation transfer function (ST-MTF) modeling to examine the speech information represented in temporal vs. frontoparietal networks for two speech recognition tasks with and without a competing talker. Specifically, 31 listeners completed two versions of a three-alternative forced choice competing speech task: "Unison" and "Competing", in which a female (target) and a male (competing) talker uttered identical or different phrases, respectively. Spectrotemporal modulation filtering (i.e., acoustic distortion) was applied to the two-talker mixtures and ST-MTF models were generated to predict brain activation from differences in spectrotemporal-modulation distortion on each trial. Three cortical networks were identified based on differential patterns of ST-MTF predictions and the resultant ST-MTF weights across conditions (Unison, Competing): a bilateral superior temporal (S-T) network, a frontoparietal (F-P) network, and a network distributed across cortical midline regions and the angular gyrus (M-AG). The S-T network and the M-AG network responded primarily to spectrotemporal cues associated with speech intelligibility, regardless of condition, but the S-T network responded to a greater range of temporal modulations suggesting a more acoustically driven response. The F-P network responded to the absence of intelligibility-related cues in both conditions, but also to the absence (presence) of target-talker (competing-talker) vocal pitch in the Competing condition, suggesting a generalized response to signal degradation. Task performance was best predicted by activation in the S-T and F-P networks, but in opposite directions (S-T: more activation = better performance; F-P: vice versa). Moreover, S-T network predictions were entirely ST-MTF mediated while F-P network predictions were ST-MTF mediated only in the Unison condition, suggesting an influence from non-acoustic sources (e.g., informational masking) in the Competing condition. Activation in the M-AG network was weakly positively correlated with performance and this relation was entirely superseded by those in the S-T and F-P networks. Regarding contributions to speech recognition, we conclude: (a) superior temporal regions play a bottom-up, perceptual role that is not qualitatively dependent on the presence of competing speech; (b) frontoparietal regions play a top-down role that is modulated by competing speech and scales with listening effort; and (c) performance ultimately relies on dynamic interactions between these networks, with ancillary contributions from networks not involved in speech processing per se (e.g., the M-AG network).
Collapse
Affiliation(s)
| | - Nicole Whittle
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States
| | | | - Grace Lee
- Loma Linda University, Loma Linda, CA, United States
| | | | - Samuel Barnes
- Loma Linda University, Loma Linda, CA, United States
| | | | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States.
| |
Collapse
|
2
|
Macdonald R, Brandt S, Theakston A, Lieven E, Serratrice L. The Role of Animacy in Children's Interpretation of Relative Clauses in English: Evidence From Sentence-Picture Matching and Eye Movements. Cogn Sci 2020; 44:e12874. [PMID: 32713028 DOI: 10.1111/cogs.12874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 12/01/2022]
Abstract
Subject relative clauses (SRCs) are typically processed more easily than object relative clauses (ORCs), but this difference is diminished by an inanimate head-noun in semantically non-reversible ORCs ("The book that the boy is reading"). In two eye-tracking experiments, we investigated the influence of animacy on online processing of semantically reversible SRCs and ORCs using lexically inanimate items that were perceptually animate due to motion (e.g., "Where is the tractor that the cow is chasing"). In Experiment 1, 48 children (aged 4;5-6;4) and 32 adults listened to sentences that varied in the lexical animacy of the NP1 head-noun (Animate/Inanimate) and relative clause (RC) type (SRC/ORC) with an animate NP2 while viewing two images depicting opposite actions. As expected, inanimate head-nouns facilitated the correct interpretation of ORCs in children; however, online data revealed children were more likely to anticipate an SRC as the RC unfolded when an inanimate head-noun was used, suggesting processing was sensitive to perceptual animacy. In Experiment 2, we repeated our design with inanimate (rather than animate) NP2s (e.g., "where is the tractor that the car is following") to investigate whether our online findings were due to increased visual surprisal at an inanimate as agent, or to similarity-based interference. We again found greater anticipation for an SRC in the inanimate condition, supporting our surprisal hypothesis. Across the experiments, offline measures show that lexical animacy influenced children's interpretation of ORCs, whereas online measures reveal that as RCs unfolded, children were sensitive to the perceptual animacy of lexically inanimate NPs, which was not reflected in the offline data. Overall measures of syntactic comprehension, inhibitory control, and verbal short-term memory and working memory were not predictive of children's accuracy in RC interpretation, with the exception of a positive correlation with a standardized measure of syntactic comprehension in Experiment 1.
Collapse
Affiliation(s)
| | - Silke Brandt
- Department of Linguistics and English Language, Lancaster University
| | - Anna Theakston
- Division of Human Communication, Development & Hearing, University of Manchester
| | - Elena Lieven
- Division of Human Communication, Development & Hearing, University of Manchester
| | | |
Collapse
|