Gao Z, Shen M. Unraveling the binding problem in working memory: insights from the hierarchical binding model.
Cogn Process 2024;
25:97-104. [PMID:
39123055 DOI:
10.1007/s10339-024-01210-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The binding problem is a crucial issue in the study of working memory (WM) and remains a central topic of debate among various WM models. Over the past decade, we have explored feature binding within WM, guided by the Hierarchical Binding Model (HBM). This model suggests that WM binding occurs in two stages: an initial implicit binding involving rapid, coarse feature processing, followed by explicit binding where focused attention refines these features via a reentry process. We found that implicit binding is closely related to the attentional processing of features during the perceptual stage. Basic features that can be rapidly and coarsely processed in parallel through spread attention are involuntarily extracted into WM along with the target features, forming a rough bound representation. For explicit binding, we examined the role of attention in retaining explicit binding in WM, emphasizing the unique role of reentry in the HBM. Our findings indicate that WM binding requires additional object attention through the reentry process. These results demonstrate that both implicit and explicit bindings are integral to WM and that the HBM is effective in elucidating the binding mechanisms within WM.
Collapse