1
|
Yang X, Cacucci F, Burgess N, Wills TJ, Chen G. Visual boundary cues suffice to anchor place and grid cells in virtual reality. Curr Biol 2024; 34:2256-2264.e3. [PMID: 38701787 DOI: 10.1016/j.cub.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The hippocampal formation contains neurons responsive to an animal's current location and orientation, which together provide the organism with a neural map of space.1,2,3 Spatially tuned neurons rely on external landmark cues and internally generated movement information to estimate position.4,5 An important class of landmark cue are the boundaries delimiting an environment, which can define place cell field position6,7 and stabilize grid cell firing.8 However, the precise nature of the sensory information used to detect boundaries remains unknown. We used 2-dimensional virtual reality (VR)9 to show that visual cues from elevated walls surrounding the environment are both sufficient and necessary to stabilize place and grid cell responses in VR, when only visual and self-motion cues are available. By contrast, flat boundaries formed by the edges of a textured floor did not stabilize place and grid cells, indicating only specific forms of visual boundary stabilize hippocampal spatial firing. Unstable grid cells retain internally coherent, hexagonally arranged firing fields, but these fields "drift" with respect to the virtual environment over periods >5 s. Optic flow from a virtual floor does not slow drift dynamics, emphasizing the importance of boundary-related visual information. Surprisingly, place fields are more stable close to boundaries even with floor and wall cues removed, suggesting invisible boundaries are inferred using the motion of a discrete, separate cue (a beacon signaling reward location). Subsets of place cells show allocentric directional tuning toward the beacon, with strength of tuning correlating with place field stability when boundaries are removed.
Collapse
Affiliation(s)
- Xiuting Yang
- School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Guifen Chen
- School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK.
| |
Collapse
|
2
|
Buckley MG, Holden LJ, Smith AD, Haselgrove M. The developmental trajectories of children's reorientation to global and local properties of environmental geometry. J Exp Psychol Gen 2024; 153:889-912. [PMID: 35925741 PMCID: PMC11115358 DOI: 10.1037/xge0001265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
The way in which organisms represent the shape of their environments during navigation has been debated in cognitive, comparative, and developmental psychology. While there is evidence that adult humans encode the entire boundary shape of an environment (a global-shape representation), there are also data demonstrating that organisms reorient using only segments of the boundary that signal a goal location (a local-shape representation). Developmental studies offer unique insights into this debate; however, most studies have used designs that cannot dissociate the type of boundary-shape representation that children use to guide reorientation. Thus, we examined the developmental trajectories of children's reorientation according to local and global boundary shape. Participants aged 6-12 years were trained to find a goal hidden in one corner of a virtual arena, after which they were required to reorient in a novel test arena. From 10.5 years, children performed above chance when the test arena permitted reorientation based only on local-shape (Experiment 2), or only global-shape (Experiment 3) information. Moreover, when these responses were placed into conflict, older children reoriented with respect to global-shape information (Experiment 4). These age-related findings were not due to older children being better able to reorient in virtual environments per se: when trained and tested within the same environment (Experiment 1), children performed above chance from 6 years. Together, our results suggest (a) the ability to reorient on the basis of global- and local-shape representations develops in parallel, and (b) shape-based information is weighted to determine which representation informs reorientation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
|
3
|
Lee SA. Navigational roots of spatial and temporal memory structure. Anim Cogn 2023; 26:87-95. [PMID: 36480071 DOI: 10.1007/s10071-022-01726-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Our minds are constantly in transit, from the present to the past to the future, across places we have and have not directly experienced. Nevertheless, memories of our mental time travel are not organized continuously and are adaptively chunked into contexts and episodes. In this paper, I will review evidence that suggests that spatial boundary representations play a critical role in providing structure to both our spatial and temporal memories. I will illustrate the intimate connection between hippocampal spatial mapping and temporal sequencing of episodic memory to propose that high-level cognitive processes like mental time travel and conceptual mapping are rooted in basic navigational mechanisms that we humans and nonhuman animals share. Our neuroscientific understanding of hippocampal function across species may provide new insight into the origins of even the most uniquely human cognitive abilities.
Collapse
Affiliation(s)
- Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-Ro 1, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Rah YJ, Kim J, Lee SA. Effects of spatial boundaries on episodic memory development. Child Dev 2022; 93:1574-1583. [PMID: 35467753 DOI: 10.1111/cdev.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Children's spatial mapping starts out particularly sensitive to 3D wall-like boundaries and develops over early childhood to flexibly include other boundary types. This study investigated whether spatial boundaries influence children's episodic memory, as in adults, and whether this effect is modulated by boundary type. Eighty-one Korean children (34 girls, 36-84 months old) re-enacted a sequence of three discrete hiding events within a space containing one of three boundaries: 3D wall, aligned objects, or 2D line. Children's memory of events occurring on one side of the boundary developed earlier than those that crossed the boundary. At first, this interaction only applied to the 3D wall and extended to other boundary types with age, suggesting that children's changing spatial representations influence their episodic memory development.
Collapse
Affiliation(s)
- Yu Jin Rah
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jiyun Kim
- Department of Education, Korea University, Seoul, Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
5
|
Baratti G, Potrich D, Lee SA, Morandi-Raikova A, Sovrano VA. The Geometric World of Fishes: A Synthesis on Spatial Reorientation in Teleosts. Animals (Basel) 2022; 12:881. [PMID: 35405870 PMCID: PMC8997125 DOI: 10.3390/ani12070881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Fishes navigate through underwater environments with remarkable spatial precision and memory. Freshwater and seawater species make use of several orientation strategies for adaptative behavior that is on par with terrestrial organisms, and research on cognitive mapping and landmark use in fish have shown that relational and associative spatial learning guide goal-directed navigation not only in terrestrial but also in aquatic habitats. In the past thirty years, researchers explored spatial cognition in fishes in relation to the use of environmental geometry, perhaps because of the scientific value to compare them with land-dwelling animals. Geometric navigation involves the encoding of macrostructural characteristics of space, which are based on the Euclidean concepts of "points", "surfaces", and "boundaries". The current review aims to inspect the extant literature on navigation by geometry in fishes, emphasizing both the recruitment of visual/extra-visual strategies and the nature of the behavioral task on orientation performance.
Collapse
Affiliation(s)
- Greta Baratti
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Davide Potrich
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea;
| | - Anastasia Morandi-Raikova
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Valeria Anna Sovrano
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
6
|
Learning by Doing: The Use of Distance, Corners and Length in Rewarded Geometric Tasks by Zebrafish ( Danio rerio). Animals (Basel) 2021; 11:ani11072001. [PMID: 34359129 PMCID: PMC8300093 DOI: 10.3390/ani11072001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Geometric navigation allows animals to efficiently move towards essential life-spaces by taking advantage of macrostructural information such as distance, angular magnitude, and length, in relation to left-right positional sense. In natural contexts, these cues can be referred to extensive three-dimensional surfaces such as a slope or a riverbed, thus becoming crucial to orient and find useful supplies. In controlled contexts, it is possible to set apart these components by handling the global shape of the experimental space (rectangular or square) as well, with the aim to specially probe the impact of each of them on navigation behavior of animals, including fishes. The present study aimed at investigating whether a well-known vertebrate, the zebrafish, could learn to encode and retain in memory such metric information (in terms of distances, corners, and lengths) in association with left–right directions, to gain rewards. Our results showed that zebrafish learned to use all these geometric attributes when repeatedly exposed to them, over a period of training, thereby giving strength to the ecological relevance of environmental geometry as a source of spatial knowledge. Generally, the engagement of zebrafish may consent to assess computations underlying large-scale-based navigation, also by drawing targeted comparisons, due to its behavioral, cognitive, and even emotional similarities with mammals. Abstract Zebrafish spontaneously use distance and directional relationships among three-dimensional extended surfaces to reorient within a rectangular arena. However, they fail to take advantage of either an array of freestanding corners or an array of unequal-length surfaces to search for a no-longer-present goal under a spontaneous cued memory procedure, being unable to use the information supplied by corners and length without some kind of rewarded training. The present study aimed to tease apart the geometric components characterizing a rectangular enclosure under a procedure recruiting the reference memory, thus training zebrafish in fragmented layouts that provided differences in surface distance, corners, and length. Results showed that fish, besides the distance, easily learned to use both corners and length if subjected to a rewarded exit task over time, suggesting that they can represent all the geometrically informative parts of a rectangular arena when consistently exposed to them. Altogether, these findings highlight crucially important issues apropos the employment of different behavioral protocols (spontaneous choice versus training over time) to assess spatial abilities of zebrafish, further paving the way to deepen the role of visual and nonvisual encodings of isolated geometric components in relation to macrostructural boundaries.
Collapse
|
7
|
Charalambous E, Hanna S, Penn A. Aha! I know where I am: the contribution of visuospatial cues to reorientation in urban environments. SPATIAL COGNITION AND COMPUTATION 2021. [DOI: 10.1080/13875868.2020.1865359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Efrosini Charalambous
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| | - Sean Hanna
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| | - Alan Penn
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
8
|
Nardi D, Carpenter SE, Johnson SR, Gilliland GA, Melo VL, Pugliese R, Coppola VJ, Kelly DM. Spatial reorientation with a geometric array of auditory cues. Q J Exp Psychol (Hove) 2020; 75:362-373. [PMID: 32111145 DOI: 10.1177/1747021820913295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A visuocentric bias has dominated the literature on spatial navigation and reorientation. Studies on visually accessed environments indicate that, during reorientation, human and non-human animals encode the geometric shape of the environment, even if this information is unnecessary and insufficient for the task. In an attempt to extend our limited knowledge on the similarities and differences between visual and non-visual navigation, here we examined whether the same phenomenon would be observed during auditory-guided reorientation. Provided with a rectangular array of four distinct auditory landmarks, blindfolded, sighted participants had to learn the location of a target object situated on a panel of an octagonal arena. Subsequent test trials were administered to understand how the task was acquired. Crucially, in a condition in which the auditory cues were indistinguishable (same sound sample), participants could still identify the correct target location, suggesting that the rectangular array of auditory landmarks was encoded as a geometric configuration. This is the first evidence of incidental encoding of geometric information with auditory cues and, consistent with the theory of functional equivalence, it supports the generalisation of mechanisms of spatial learning across encoding modalities.
Collapse
Affiliation(s)
- Daniele Nardi
- Department of Psychological Science, Ball State University, Muncie, IN, USA
| | | | - Somer R Johnson
- Department of Psychological Science, Ball State University, Muncie, IN, USA
| | - Greg A Gilliland
- Department of Psychological Science, Ball State University, Muncie, IN, USA
| | - Viveka L Melo
- Department of Psychological Science, Ball State University, Muncie, IN, USA
| | - Roberto Pugliese
- Academy of Fine Arts, University of the Arts Helsinki, Helsinki, Finland
| | - Vincent J Coppola
- Department of Psychology, Eastern Illinois University, Charleston, IL, USA
| | - Debbie M Kelly
- Department of Psychology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Wang CH, Monaco JD, Knierim JJ. Hippocampal Place Cells Encode Local Surface-Texture Boundaries. Curr Biol 2020; 30:1397-1409.e7. [PMID: 32109393 DOI: 10.1016/j.cub.2020.01.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/21/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
Abstract
The cognitive map is often assumed to be a Euclidean map that isometrically represents the real world (i.e., the Euclidean distance between any two locations in the physical world should be preserved on the cognitive map). However, accumulating evidence suggests that environmental boundaries can distort the mental representations of physical space. For example, the distance between two locations can be remembered as longer than the true physical distance if the locations are separated by a boundary. While this overestimation is observed under different experimental conditions, even when the boundary is formed by flat surface cues, its physiological basis is not well understood. We examined the neural representation of flat surface cue boundaries, and of the space segregated by these boundaries, by recording place cell activity from CA1 and CA3 while rats foraged on a circular track or square platforms with inhomogeneous surface textures. About 40% of the place field edges concentrated near the boundaries on the circular track (significantly above the chance level 33%). Similarly, place field edges were more prevalent near boundaries on the platforms than expected by chance. In both one- and two-dimensional environments, the population vectors of place cell activity changed more abruptly with distance between locations that crossed cue boundaries than between locations within a bounded region. These results show that the locations of surface boundaries were evident as enhanced decorrelations of the neural representations of locations to either side of the boundaries. This enhancement might underlie the cognitive phenomenon of overestimation of distances across boundaries.
Collapse
Affiliation(s)
- Chia-Hsuan Wang
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph D Monaco
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
10
|
The use of spatial and local cues for orientation in domestic chicks (Gallus gallus). Anim Cogn 2020; 23:367-387. [DOI: 10.1007/s10071-019-01342-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
|
11
|
The representation selection problem: Why we should favor the geometric-module framework of spatial reorientation over the view-matching framework. Cognition 2019; 192:103985. [DOI: 10.1016/j.cognition.2019.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 01/20/2023]
|
12
|
Julian JB, Keinath AT, Marchette SA, Epstein RA. The Neurocognitive Basis of Spatial Reorientation. Curr Biol 2019; 28:R1059-R1073. [PMID: 30205055 DOI: 10.1016/j.cub.2018.04.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability to recover one's bearings when lost is a skill that is fundamental for spatial navigation. We review the cognitive and neural mechanisms that underlie this ability, with the aim of linking together previously disparate findings from animal behavior, human psychology, electrophysiology, and cognitive neuroscience. Behavioral work suggests that reorientation involves two key abilities: first, the recovery of a spatial reference frame (a cognitive map) that is appropriate to the current environment; and second, the determination of one's heading and location relative to that reference frame. Electrophysiological recording studies, primarily in rodents, have revealed potential correlates of these operations in place, grid, border/boundary, and head-direction cells in the hippocampal formation. Cognitive neuroscience studies, primarily in humans, suggest that the perceptual inputs necessary for these operations are processed by neocortical regions such as the retrosplenial complex, occipital place area and parahippocampal place area, with the retrosplenial complex mediating spatial transformations between the local environment and the recovered spatial reference frame, the occipital place area supporting perception of local boundaries, and the parahippocampal place area processing visual information that is essential for identification of the local spatial context. By combining results across these various literatures, we converge on a unified account of reorientation that bridges the cognitive and neural domains.
Collapse
Affiliation(s)
- Joshua B Julian
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexandra T Keinath
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; McGill University, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC, Canada
| | - Steven A Marchette
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Russell A Epstein
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Negen J, Bou Ali L, Chere B, Roome HE, Park Y, Nardini M. Coding Locations Relative to One or Many Landmarks in Childhood. PLoS Comput Biol 2019; 15:e1007380. [PMID: 31658253 PMCID: PMC6816551 DOI: 10.1371/journal.pcbi.1007380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022] Open
Abstract
Cognitive development studies how information processing in the brain changes over the course of development. A key part of this question is how information is represented and stored in memory. This study examined allocentric (world-based) spatial memory, an important cognitive tool for planning routes and interacting with the space around us. This is typically theorized to use multiple landmarks all at once whenever it operates. In contrast, here we show that allocentric spatial memory frequently operates over a limited spatial window, much less than the full proximal scene, for children between 3.5 and 8.5 years old. The use of multiple landmarks increases gradually with age. Participants were asked to point to a remembered target location after a change of view in immersive virtual reality. A k-fold cross-validation model-comparison selected a model where young children usually use the target location's vector to the single nearest landmark and rarely take advantage of the vectors to other nearby landmarks. The comparison models, which attempt to explain the errors as generic forms of noise rather than encoding to a single spatial cue, did not capture the distribution of responses as well. Parameter fits of this new single- versus multi-cue model are also easily interpretable and related to other variables of interest in development (age, executive function). Based on this, we theorize that spatial memory in humans develops through three advancing levels (but not strict stages): most likely to encode locations egocentrically (relative to the self), then allocentrically (relative to the world) but using only one landmark, and finally, most likely to encode locations relative to multiple parts of the scene.
Collapse
Affiliation(s)
- James Negen
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Linda Bou Ali
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Brittney Chere
- Department of Psychological Sciences, Birkbeck, London, United Kingdom
| | - Hannah E. Roome
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Yeachan Park
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Marko Nardini
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
14
|
Ferrara K, Landau B, Park S. Impaired behavioral and neural representation of scenes in Williams syndrome. Cortex 2019; 121:264-276. [PMID: 31655392 DOI: 10.1016/j.cortex.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/12/2019] [Accepted: 09/01/2019] [Indexed: 01/08/2023]
Abstract
Boundaries are crucial to our representation of the geometric shape of scenes, which can be used to reorient in space. Behavioral research has shown that children and adults share exquisite sensitivity to a defining feature of a boundary: its vertical extent. Imaging studies have shown that this boundary property is represented in the parahippocampal place area (PPA) among typically developed (TD) adults. Here, we show that sensitivity to the vertical extent of scene boundaries is impaired at both the behavioral and neural level in people with Williams syndrome (WS), a genetic deficit that results in severely impaired spatial functions. Behavioral reorientation was tested in three boundary conditions: a flat Mat, a 5 cm high Curb, and full Walls. Adults with WS could reorient in a rectangular space defined by Wall boundaries, but not Curb or Mat boundaries. In contrast, TD age-matched controls could reorient by all three boundary types and TD 4-year-olds could reorient by either Wall or Curb boundaries. Using fMRI, we find that the WS behavioral deficit is echoed in their neural representation of boundaries. While TD age-matched controls showed distinct neural responses to scenes depicting Mat, Curb, and Wall boundaries in the PPA, people with WS showed only a distinction between the Wall and Mat or Curb, but no distinction between the Mat and Curb. Taken together, these results reveal a close coupling between the representation of boundaries as they are used in behavioral reorientation and neural encoding, suggesting that damage to this key element of spatial representation may have a genetic foundation.
Collapse
Affiliation(s)
- Katrina Ferrara
- Department of Cognitive Science, Johns Hopkins University, USA; Center for Brain Plasticity and Recovery, Georgetown University, USA.
| | - Barbara Landau
- Department of Cognitive Science, Johns Hopkins University, USA.
| | - Soojin Park
- Department of Cognitive Science, Johns Hopkins University, USA; Department of Psychology, Yonsei University, South Korea.
| |
Collapse
|
15
|
Fernandez-Baizan C, Arias JL, Mendez M. Spatial orientation assessment in preschool children: Egocentric and allocentric frameworks. APPLIED NEUROPSYCHOLOGY-CHILD 2019; 10:171-193. [PMID: 31268354 DOI: 10.1080/21622965.2019.1630278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Spatial orientation is an important function in daily life because it allows us to reach a target place when moving through our environment, using self-centered (egocentric) or environmental information (allocentric). Compared to other cognitive functions, spatial orientation has been studied less in preschool ages. Some brain areas, such as the hippocampus and the temporal as well as the parietal and frontal cortices, are involved in spatial orientation. Therefore, when these brain regions are altered in neurological conditions or in atypical development in children, we would expect impairment of spatial abilities. The aim of this study is to review studies, published in recent years, that use egocentric and allocentric spatial orientation tasks for assessing spatial memory in preschool children, with the final goal of finding out which tests could be included in a clinical neuropsychological evaluation. We observed that although egocentric spatial orientation emerges first during development, allocentric spatial orientation tasks are employed at very early ages. Most of these tasks are performed in real environments, allowing children's self-movements and using environmental modifications, but technologies such as virtual or augmented reality are increasingly used. Other aspects are discussed, such as the lack of consensus in the nomenclature, the difficulty of tracing the course of development of spatial orientation, or the ecological validity of the tests used. We finally observed that there is greater interest in studying the allocentric framework than the egocentric one, which makes it difficult to compare the use of the two frames of reference during a neuropsychological evaluation in preschool-aged children.
Collapse
Affiliation(s)
- Cristina Fernandez-Baizan
- Department of Psychology, University of Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Jorge L Arias
- Department of Psychology, University of Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Marta Mendez
- Department of Psychology, University of Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|
16
|
Gianni E, De Zorzi L, Lee SA. The developing role of transparent surfaces in children's spatial representation. Cogn Psychol 2018; 105:39-52. [PMID: 29920399 DOI: 10.1016/j.cogpsych.2018.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 05/30/2018] [Indexed: 11/28/2022]
Abstract
Children adeptly use environmental boundaries to navigate. But how do they represent surfaces as boundaries, and how does this change over development? To investigate the effects of boundaries as visual and physical barriers, we tested spatial reorientation in 160 children (2-7 year-olds) in a transparent rectangular arena (Condition 1). In contrast with their consistent success using opaque surfaces (Condition 2), children only succeeded at using transparent surfaces at 5-7 years of age. These results suggest a critical role of visually opaque surfaces in early spatial coding and a developmental change around the age of five in representing locations with respect to transparent surfaces. In application, these findings may inform our usage of windows and glass surfaces in designing and building environments occupied by young children.
Collapse
Affiliation(s)
- Eugenia Gianni
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, Rovereto, Italy
| | - Laura De Zorzi
- Department of Psychology and Cognitive Science, Corso Bettini 84, Rovereto, Italy
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro 291, Daejeon, Republic of Korea; Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, Rovereto, Italy.
| |
Collapse
|
17
|
Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum. J Neurosci 2018; 38:3265-3272. [PMID: 29467145 DOI: 10.1523/jneurosci.3216-17.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one's own body.SIGNIFICANCE STATEMENT Spatial computations using environmental boundaries are an integral part of the brain's spatial mapping system. In rodents, border/boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason to believe that such representations also exist in humans, the evidence has thus far been limited to functional neuroimaging studies that broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging of hippocampal subregions, we identified a neural marker of boundary representation in the human subiculum.
Collapse
|
18
|
Effects of two-dimensional versus three-dimensional landmark geometry and layout on young children's recall of locations from new viewpoints. J Exp Child Psychol 2018; 170:1-29. [PMID: 29407185 DOI: 10.1016/j.jecp.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
Abstract
Spatial memory is an important aspect of adaptive behavior and experience, providing both content and context to the perceptions and memories that we form in everyday life. Young children's abilities in this realm shift from mainly egocentric (self-based) to include allocentric (world-based) codings at around 4 years of age. However, information about the cognitive mechanisms underlying acquisition of these new abilities is still lacking. We examined allocentric spatial recall in 4.5- to 8.5-year-olds, looking for continuity with navigation as previously studied in 2- to 4-year-olds and other species. We specifically predicted an advantage for three-dimensional landmarks over two-dimensional ones and for recalling targets "in the middle" versus elsewhere. However, we did not find compelling evidence for either of these effects, and indeed some analyses even support the opposite of each of these conclusions. There were also no significant interactions with age. These findings highlight the incompleteness of our overall theories of the development of spatial cognition in general and allocentric spatial recall in particular. They also suggest that allocentric spatial recall involves processes that have separate behavioral characteristics from other cognitive systems involved in navigation earlier in life and in other species.
Collapse
|
19
|
Julian JB, Ryan J, Hamilton RH, Epstein RA. The Occipital Place Area Is Causally Involved in Representing Environmental Boundaries during Navigation. Curr Biol 2018; 26:1104-9. [PMID: 27020742 DOI: 10.1016/j.cub.2016.02.066] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 10/21/2022]
Abstract
Thirty years of research suggests that environmental boundaries-e.g., the walls of an experimental chamber or room-exert powerful influence on navigational behavior, often to the exclusion of other cues [1-9]. Consistent with this behavioral work, neurons in brain structures that instantiate spatial memory often exhibit firing fields that are strongly controlled by environmental boundaries [10-15]. Despite the clear importance of environmental boundaries for spatial coding, however, a brain region that mediates the perception of boundary information has not yet been identified. We hypothesized that the occipital place area (OPA), a scene-selective region located near the transverse occipital sulcus [16], might provide this perceptual source by extracting boundary information from visual scenes during navigation. To test this idea, we used transcranial magnetic stimulation (TMS) to interrupt processing in the OPA while subjects performed a virtual-reality memory task that required them to learn the spatial locations of test objects that were either fixed in place relative to the boundary of the environment or moved in tandem with a landmark object. Consistent with our prediction, we found that TMS to the right OPA impaired spatial memory for boundary-tethered, but not landmark-tethered, objects. Moreover, this effect was found when the boundary was defined by a wall, but not when it was defined by a marking on the ground. These results show that the OPA is causally involved in boundary-based spatial navigation and suggest that the OPA is the perceptual source of the boundary information that controls navigational behavior.
Collapse
Affiliation(s)
- Joshua B Julian
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jack Ryan
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Eidlin-Levy H, Rubinsten O. Developmental Dyscalculia and Automatic Magnitudes Processing: Investigating Interference Effects between Area and Perimeter. Front Psychol 2017; 8:2206. [PMID: 29312066 PMCID: PMC5742624 DOI: 10.3389/fpsyg.2017.02206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
The relationship between numbers and other magnitudes has been extensively investigated in the scientific literature. Here, the objectives were to examine whether two continuous magnitudes, area and perimeter, are automatically processed and whether adults with developmental dyscalculia (DD) are deficient in their ability to automatically process one or both of these magnitudes. Fifty-seven students (30 with DD and 27 with typical development) performed a novel Stroop-like task requiring estimation of one aspect (area or perimeter) while ignoring the other. In order to track possible changes in automaticity due to practice, we measured performance after initial and continuous exposure to stimuli. Similar to previous findings, current results show a significant group × congruency interaction, evident beyond exposure level or magnitude type. That is, the DD group systematically showed larger Stroop effects. However, analysis of each exposure period showed that during initial exposure to stimuli the DD group showed larger Stroop effects in the perimeter and not in the area task. In contrast, during continuous exposure to stimuli no triple interaction was evident. It is concluded that both magnitudes are automatically processed. Nevertheless, individuals with DD are deficient in inhibiting irrelevant magnitude information in general and, specifically, struggle to inhibit salient area information after initial exposure to a perimeter comparison task. Accordingly, the findings support the assumption that DD involves a deficiency in multiple cognitive components, which include domain-specific and domain-general cognitive functions.
Collapse
Affiliation(s)
- Hili Eidlin-Levy
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Department of Learning Disabilities, University of Haifa, Haifa, Israel
| | | |
Collapse
|
21
|
|
22
|
Moraleda Barreno E. Navegación Espacial en Niños de 3 y 6 Años en un Laberinto Circular: La interacción entre diferentes marcos geométricos de referencia. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.nenl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Introducción: Diversas teorías intentan explicar las estrategias de navegación que utilizan los niños menores de 6 años, siendo el uso de la geometría el principal tema de debate. Objetivo: Estudiar los sistemas de navegación espacial en niños de 3 y 6 años y su utilización de diversos marcos de referencia geométricos y de la guía proximal. Hipótesis: Los niños emplearán la geometría como predice la teoría de los módulos geométricos. Participantes: 20 niños de 6 años y 20 de 3. Métodos: Se utilizó un laberinto circular donde los niños tenían que buscar un objeto escondido. Se formaron dos grupos: desorientados respecto a la habitación exterior y no desorientados. Resultados: Los niños de 3 años necesitaron la información geométrica de la habitación exterior, los de 6 años también son capaces de emplear la guía proximal y pueden usar la geometría del recinto experimental si su aprendizaje se ha realizado en presencia de la geometría de la habitación. Conclusiones: Los resultados apoyan la teoría de la combinación adaptativa, en lugar de la de módulos geométricos. Por otro lado, la presencia de marcos de referencia geométricos fiables facilita la utilización de otros tipos de claves que en su ausencia no son empleadas.
Collapse
|
23
|
Negen J, Heywood-Everett E, Roome HE, Nardini M. Development of allocentric spatial recall from new viewpoints in virtual reality. Dev Sci 2017; 21. [DOI: 10.1111/desc.12496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/22/2016] [Indexed: 12/01/2022]
Affiliation(s)
- James Negen
- Department of Psychology; Durham University; Durham UK
| | | | | | - Marko Nardini
- Department of Psychology; Durham University; Durham UK
| |
Collapse
|
24
|
Marchette SA, Ryan J, Epstein RA. Schematic representations of local environmental space guide goal-directed navigation. Cognition 2016; 158:68-80. [PMID: 27814459 DOI: 10.1016/j.cognition.2016.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022]
Abstract
To successfully navigate to a target, it is useful to be able to define its location at multiple levels of specificity. For example, the location of a favorite coffee mug can be described in terms of which room it is in, or in terms of where it is within the room. An appealing hypothesis is that these levels of description are retrieved from memory by accessing the same representation at progressively finer levels of granularity-first remembering the general location of an object and then "zooming in." Here we provide evidence for an alternative view, in which navigational behavior is guided by independent representations at multiple spatial scales. Subjects learned the locations of objects that were positioned within four visually distinct but geometrically similar buildings, which were in turn positioned within a broader virtual park. They were then tested on their knowledge of object location by asking them to navigate to the remembered location of each object. We examined errors during the test phase for confusions among geometrically analogous locations in different buildings-that is, navigating to the right location in the wrong building. We observed that subjects frequently made these confusions, which are analogous to remembering a passage's location on the page of a book but not remembering the page that the passage is on. This suggests that subjects were recalling the object's local location without recalling its global location. Further manipulations across seven experiments indicated that geometric confusions were observed even between buildings that were not metrically identical as long as geometrical equivalence could be defined. However, removing the walls so that the larger environment was no longer divided into subspaces abolished these errors. Taken together, our results suggest that human spatial memory contains two separable representations of "where" an object can be found: (i) a schematic map of where an object lies with respect to local landmarks and boundaries; (ii) a representation of the identity and location of each local environment.
Collapse
Affiliation(s)
| | - Jack Ryan
- Department of Psychology, University of Pennsylvania, United States
| | | |
Collapse
|
25
|
Abstract
Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.
Collapse
|
26
|
Making Sense of Real-World Scenes. Trends Cogn Sci 2016; 20:843-856. [PMID: 27769727 DOI: 10.1016/j.tics.2016.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
To interact with the world, we have to make sense of the continuous sensory input conveying information about our environment. A recent surge of studies has investigated the processes enabling scene understanding, using increasingly complex stimuli and sophisticated analyses to highlight the visual features and brain regions involved. However, there are two major challenges to producing a comprehensive framework for scene understanding. First, scene perception is highly dynamic, subserving multiple behavioral goals. Second, a multitude of different visual properties co-occur across scenes and may be correlated or independent. We synthesize the recent literature and argue that for a complete view of scene understanding, it is necessary to account for both differing observer goals and the contribution of diverse scene properties.
Collapse
|
27
|
Ferrara K, Park S. Neural representation of scene boundaries. Neuropsychologia 2016; 89:180-190. [PMID: 27181883 DOI: 10.1016/j.neuropsychologia.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Three-dimensional environmental boundaries fundamentally define the limits of a given space. A body of research employing a variety of methods points to their importance as cues in navigation. However, little is known about the nature of the representation of scene boundaries by high-level scene cortices in the human brain (namely, the parahippocampal place area (PPA) and retrosplenial complex (RSC)). Here we use univariate and multivoxel pattern analysis to study classification performance for artificial scene images that vary in degree of vertical boundary structure (a flat 2D boundary, a very slight addition of 3D boundary, or full walls). Our findings present evidence that there are distinct neural components for representing two different aspects of boundaries: 1) acute sensitivity to the presence of grounded 3D vertical structure, represented by the PPA, and 2) whether a boundary introduces a significant impediment to the viewer's potential navigation within a space, represented by RSC.
Collapse
Affiliation(s)
- Katrina Ferrara
- Department of Cognitive Science, Johns Hopkins University, United States
| | - Soojin Park
- Department of Cognitive Science, Johns Hopkins University, United States.
| |
Collapse
|
28
|
Buckley MG, Smith AD, Haselgrove M. Blocking spatial navigation across environments that have a different shape. JOURNAL OF EXPERIMENTAL PSYCHOLOGY-ANIMAL LEARNING AND COGNITION 2015; 42:51-66. [PMID: 26569017 PMCID: PMC4708615 DOI: 10.1037/xan0000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
According to the geometric module hypothesis, organisms encode a global representation of the space in which they navigate, and this representation is not prone to interference from other cues. A number of studies, however, have shown that both human and non-human animals can navigate on the basis of local geometric cues provided by the shape of an environment. According to the model of spatial learning proposed by Miller and Shettleworth (2007, 2008), geometric cues compete for associative strength in the same manner as non-geometric cues do. The experiments reported here were designed to test if humans learn about local geometric cues in a manner consistent with the Miller-Shettleworth model. Experiment 1 replicated previous findings that humans transfer navigational behavior, based on local geometric cues, from a rectangle-shaped environment to a kite-shaped environment, and vice versa. In Experiments 2 and 3, it was observed that learning about non-geometric cues blocked, and were blocked by, learning about local geometric cues. The reciprocal blocking observed is consistent with associative theories of spatial learning; however, it is difficult to explain the observed effects with theories of global-shape encoding in their current form.
Collapse
|
29
|
Abstract
Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world.
Collapse
Affiliation(s)
- Moira R. Dillon
- Psychology Department, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
30
|
Lee SA, Ferrari A, Vallortigara G, Sovrano VA. Boundary primacy in spatial mapping: Evidence from zebrafish (Danio rerio). Behav Processes 2015; 119:116-22. [DOI: 10.1016/j.beproc.2015.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022]
|
31
|
Ferrara K, Landau B. Geometric and featural systems, separable and combined: Evidence from reorientation in people with Williams syndrome. Cognition 2015; 144:123-33. [PMID: 26275835 DOI: 10.1016/j.cognition.2015.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022]
Abstract
Spatial reorientation by humans and other animals engages geometric representations of surface layouts as well as featural landmarks; however, the two types of information are thought to be behaviorally and neurally separable. In this paper, we examine the use of these two types of information during reorientation among children and adults with Williams syndrome (WS), a genetic disorder accompanied by abnormalities in brain regions that support use of both geometry and landmarks. Previous studies of reorientation in adolescents and adults with WS have shown deficits in the ability to use geometry for reorientation, but intact ability to use features, suggesting that the two systems can be differentially impaired by genetic disorder. Using a slightly modified layout, we found that many WS participants could use geometry, and most could use features along with geometry. However, the developmental trajectories for the two systems were quite different from one other, and different from those found in typical development. Purely geometric responding was not correlated with age in WS, and search processes appeared similar to those in typically developing (TD) children. In contrast, use of features in combination with geometry was correlated with age in WS, and search processes were distinctly different from TD children. The results support the view that use of geometry and features stem from different underlying mechanisms, that the developmental trajectories and operation of each are altered in WS, and that combination of information from the two systems is atypical. Given brain abnormalities in regions supporting the two kinds of information, our findings suggest that the co-operation of the two systems is functionally altered in this genetic syndrome.
Collapse
Affiliation(s)
- Katrina Ferrara
- Department of Cognitive Science, Johns Hopkins University, United States.
| | - Barbara Landau
- Department of Cognitive Science, Johns Hopkins University, United States
| |
Collapse
|
32
|
Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice. Proc Natl Acad Sci U S A 2015; 112:6503-8. [PMID: 25941390 DOI: 10.1073/pnas.1424194112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A lost navigator must identify its current location and recover its facing direction to restore its bearings. We tested the idea that these two tasks--place recognition and heading retrieval--might be mediated by distinct cognitive systems in mice. Previous work has shown that numerous species, including young children and rodents, use the geometric shape of local space to regain their sense of direction after disorientation, often ignoring nongeometric cues even when they are informative. Notably, these experiments have almost always been performed in single-chamber environments in which there is no ambiguity about place identity. We examined the navigational behavior of mice in a two-chamber paradigm in which animals had to both recognize the chamber in which they were located (place recognition) and recover their facing direction within that chamber (heading retrieval). In two experiments, we found that mice used nongeometric features for place recognition, but simultaneously failed to use these same features for heading retrieval, instead relying exclusively on spatial geometry. These results suggest the existence of separate systems for place recognition and heading retrieval in mice that are differentially sensitive to geometric and nongeometric cues. We speculate that a similar cognitive architecture may underlie human navigational behavior.
Collapse
|
33
|
Vallortigara G. Foundations of Number and Space Representations in Non-Human Species. EVOLUTIONARY ORIGINS AND EARLY DEVELOPMENT OF NUMBER PROCESSING 2015. [DOI: 10.1016/b978-0-12-420133-0.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Huang Y, Spelke ES. Core knowledge and the emergence of symbols: The case of maps. JOURNAL OF COGNITION AND DEVELOPMENT 2015; 16:81-96. [PMID: 25642150 PMCID: PMC4308729 DOI: 10.1080/15248372.2013.784975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Map reading is unique to humans but present in people of diverse cultures, at ages as young as 4 years. Here we explore the nature and sources of this ability, asking both what geometric information young children use in maps and what non-symbolic systems are associated with their map-reading performance. Four-year-old children were given two tests of map-based navigation (placing an object within a small 3D surface layout at a position indicated on a 2D map), one focused on distance relations and the other on angle relations. Children also were given two non-symbolic tasks, testing their use of geometry for navigation (a reorientation task) and for visual form analysis (a deviant-detection task). Although children successfully performed both map tasks, their performance on the two map tasks was uncorrelated, providing evidence for distinct abilities to represent distance and angle on 2D maps of 3D surface layouts. In contrast, performance on each map task was associated with performance on one of the two non-symbolic tasks: map-based navigation by distance correlated with sensitivity to the shape of the environment in the reorientation task, whereas map-based navigation by angle correlated with sensitivity to the shapes of 2D forms and patterns in the deviant detection task. These findings suggest links between one uniquely human, emerging symbolic ability, geometric map use, and two core systems of geometry.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | |
Collapse
|
35
|
Chiandetti C, Spelke ES, Vallortigara G. Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Dev Sci 2014; 18:972-8. [DOI: 10.1111/desc.12277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/30/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Cinzia Chiandetti
- Department of Life Sciences; Psychology Unit, University of Trieste; Italy
| | | | | |
Collapse
|
36
|
Sutton JE, Newcombe NS. The hippocampus is not a geometric module: processing environment geometry during reorientation. Front Hum Neurosci 2014; 8:596. [PMID: 25140145 PMCID: PMC4122240 DOI: 10.3389/fnhum.2014.00596] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/16/2014] [Indexed: 11/15/2022] Open
Abstract
The hippocampus has long been known to play a role in allocentric spatial coding, but its specific involvement in reorientation, or the recalibration of a disrupted egocentric spatial representation using allocentric spatial information, has received less attention. Initially, the cognitive literature on reorientation focused on a “geometric module” sensitive to the shape formed by extended surfaces in the environment, and the neuroscience literature followed with proposals that particular MTL regions might be the seat of such a module. However, with behavioral evidence mounting that a modular cognitive architecture is unlikely, recent work has begun to directly address the issue of the neural underpinnings of reorientation. In this review, we describe the reorientation paradigm, initial proposals for the role of the MTL when people reorient, our recent work on the neural bases of reorientation, and finally, how this new information regarding neural mechanism helps to re-interpret and clarify the original behavioral reorientation data.
Collapse
Affiliation(s)
- Jennifer E Sutton
- Department of Psychology, Brescia University College London, ON, Canada
| | - Nora S Newcombe
- Department of Psychology, Temple University Philadelphia, PA, USA
| |
Collapse
|
37
|
25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychon Bull Rev 2014; 20:1033-54. [PMID: 23456412 DOI: 10.3758/s13423-013-0416-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this article is to review and evaluate the range of theories proposed to explain findings on the use of geometry in reorientation. We consider five key approaches and models associated with them and, in the course of reviewing each approach, five key issues. First, we take up modularity theory itself, as recently revised by Lee and Spelke (Cognitive Psychology, 61, 152-176, 2010a; Experimental Brain Research, 206, 179-188, 2010b). In this context, we discuss issues concerning the basic distinction between geometry and features. Second, we review the view-matching approach (Stürzl, Cheung, Cheng, & Zeil, Journal of Experimental Psychology: Animal Behavior Processes, 34, 1-14, 2008). In this context, we highlight the possibility of cross-species differences, as well as commonalities. Third, we review an associative theory (Miller & Shettleworth, Journal of Experimental Psychology: Animal Behavior Processes, 33, 191-212, 2007; Journal of Experimental Psychology: Animal Behavior Processes, 34, 419-422, 2008). In this context, we focus on phenomena of cue competition. Fourth, we take up adaptive combination theory (Newcombe & Huttenlocher, 2006). In this context, we focus on discussing development and the effects of experience. Fifth, we examine various neurally based approaches, including frameworks proposed by Doeller and Burgess (Proceedings of the National Academy of Sciences of the United States of America, 105, 5909-5914, 2008; Doeller, King, & Burgess, Proceedings of the National Academy of Sciences of the United States of America, 105, 5915-5920, 2008) and by Sheynikhovich, Chavarriaga, Strösslin, Arleo, and Gerstner (Psychological Review, 116, 540-566, 2009). In this context, we examine the issue of the neural substrates of spatial navigation. We conclude that none of these approaches can account for all of the known phenomena concerning the use of geometry in reorientation and clarify what the challenges are for each approach.
Collapse
|
38
|
Incidental encoding of enclosure geometry does not require visual input: evidence from blindfolded adults. Mem Cognit 2014; 42:935-42. [DOI: 10.3758/s13421-014-0412-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Lewicki MS, Olshausen BA, Surlykke A, Moss CF. Scene analysis in the natural environment. Front Psychol 2014; 5:199. [PMID: 24744740 PMCID: PMC3978336 DOI: 10.3389/fpsyg.2014.00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
The problem of scene analysis has been studied in a number of different fields over the past decades. These studies have led to important insights into problems of scene analysis, but not all of these insights are widely appreciated, and there remain critical shortcomings in current approaches that hinder further progress. Here we take the view that scene analysis is a universal problem solved by all animals, and that we can gain new insight by studying the problems that animals face in complex natural environments. In particular, the jumping spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust solutions to scene analysis problems encountered in the natural environment. By examining the behaviors of these seemingly disparate animals, we emerge with a framework for studying scene analysis comprising four essential properties: (1) the ability to solve ill-posed problems, (2) the ability to integrate and store information across time and modality, (3) efficient recovery and representation of 3D scene structure, and (4) the use of optimal motor actions for acquiring information to progress toward behavioral goals.
Collapse
Affiliation(s)
- Michael S Lewicki
- Department of Electrical Engineering and Computer Science, Case Western Reserve University Cleveland, OH, USA
| | - Bruno A Olshausen
- Helen Wills Neuroscience Institute, School of Optometry, Redwood Center for Theoretical Neuroscience, University of California at Berkeley Berkeley, CA, USA
| | | | - Cynthia F Moss
- Department of Psychology and Institute for Systems Research, University of Maryland College Park, MD, USA
| |
Collapse
|
40
|
|
41
|
van den Brink D, Janzen G. Visual spatial cue use for guiding orientation in two-to-three-year-old children. Front Psychol 2013; 4:904. [PMID: 24368903 PMCID: PMC3857639 DOI: 10.3389/fpsyg.2013.00904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022] Open
Abstract
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2-3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences.
Collapse
Affiliation(s)
- Danielle van den Brink
- Behavioural Science Institute, Radboud University NijmegenNijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| | - Gabriele Janzen
- Behavioural Science Institute, Radboud University NijmegenNijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
42
|
Lee SA, Vallortigara G, Flore M, Spelke ES, Sovrano VA. Navigation by environmental geometry: the use of zebrafish as a model. ACTA ACUST UNITED AC 2013; 216:3693-9. [PMID: 23788708 DOI: 10.1242/jeb.088625] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations.
Collapse
Affiliation(s)
- Sang Ah Lee
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | | | | | | | | |
Collapse
|
43
|
Get out of the corner: Inhibition and the effect of location type and number on perceptron and human reorientation. Learn Behav 2013; 41:360-78. [PMID: 23709118 DOI: 10.3758/s13420-013-0111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spatial learning and navigation have frequently been investigated using a reorientation task paradigm (Cheng, Cognition, 23(2), 149-78, 1986). However, implementing this task typically involves making tacit assumptions about the nature of spatial information. This has important theoretical consequences: Theories of reorientation typically focus on angles at corners as geometric cues and ignore information present at noncorner locations. We present a neural network model of reorientation that challenges these assumptions and use this model to generate predictions in a novel variant of the reorientation task. We test these predictions against human behavior in a virtual environment. Networks and humans alike exhibit reorientation behavior even when goal locations are not present at corners. Our simulated and our experimental results suggest that angles are processed in a manner more similar to features, acting as a focal point for reorientation, and that the mechanisms governing reorientation behavior may be inhibitory rather than excitatory.
Collapse
|
44
|
Lew AR, Usherwood B, Fragkioudaki F, Koukoumi V, Smith SP, Austen JM, McGregor A. Transfer of spatial search between environments in human adults and young children (Homo sapiens): Implications for representation of local geometry by spatial systems. Dev Psychobiol 2013; 56:421-34. [DOI: 10.1002/dev.21109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Adina R. Lew
- Psychology Department; Lancaster University; Fylde College; Lancaster Lancashire LA1 4YF UK
| | - Barrie Usherwood
- Psychology Department; Lancaster University; Fylde College; Lancaster Lancashire LA1 4YF UK
| | | | - Varvara Koukoumi
- Psychology Department; Lancaster University; Fylde College; Lancaster Lancashire LA1 4YF UK
| | - Shamus P. Smith
- School of Engineering and Computing Sciences; Durham University; Durham UK
| | | | | |
Collapse
|
45
|
Spelke ES, Lee SA. Core systems of geometry in animal minds. Philos Trans R Soc Lond B Biol Sci 2013; 367:2784-93. [PMID: 22927577 DOI: 10.1098/rstb.2012.0210] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across animals, suggesting that they evolved in distant ancestral species. As children master symbolic systems such as maps and language, they come productively to combine representations from the two core systems of geometry in uniquely human ways; these combinations may give rise to abstract geometric intuitions. Studies of the ontogenetic and phylogenetic sources of abstract geometry therefore are illuminating of both human and animal cognition. Research on animals brings simpler model systems and richer empirical methods to bear on the analysis of abstract concepts in human minds. In return, research on humans, relating core cognitive capacities to symbolic abilities, sheds light on the content of representations in animal minds.
Collapse
Affiliation(s)
- Elizabeth S Spelke
- Department of Psychology, Harvard University, 1130 William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
46
|
Lange-Küttner C. Array Effects, Spatial Concepts, or Information Processing Speed. SWISS JOURNAL OF PSYCHOLOGY 2013. [DOI: 10.1024/1421-0185/a000113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A reaction time/accuracy experiment investigated the development of visual memory for object shape and location in 6–7- and 8–9-year-old children and adults (N = 72) in three array types: (1) an empty screen, (2) a frame delineating a region, and (3) a grid with individually delineated places. A maximized learning design was used. Explicit array boundaries in the frame and in the grid facilitated place memory in both children and adults, while place memory in the empty screen was less correct, slower, and did not improve. Children’s visual memory was initially low, but learning during the task resulted in better object than place memory. Like the children at the end of the session, adults showed better object than place memory at the beginning of the task. They subsequently also improved their object memory, but doubled their place memory performance. Children with object-region binding showed better place memory and more systematic learning effects that were specific to arrays. However, neither array boundaries nor spatial binding concepts explained the absence of place learning in children. Instead, children tried to prevent proactive shape interference in the repeated memory sets at the cost of place learning, while adults did not.
Collapse
|
47
|
Lee SA, Winkler-Rhoades N, Spelke ES. Spontaneous reorientation is guided by perceived surface distance, not by image matching or comparison. PLoS One 2012; 7:e51373. [PMID: 23251511 PMCID: PMC3520913 DOI: 10.1371/journal.pone.0051373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/07/2012] [Indexed: 11/19/2022] Open
Abstract
Humans and animals recover their sense of position and orientation using properties of the surface layout, but the processes underlying this ability are disputed. Although behavioral and neurophysiological experiments on animals long have suggested that reorientation depends on representations of surface distance, recent experiments on young children join experimental studies and computational models of animal navigation to suggest that reorientation depends either on processing of any continuous perceptual variables or on matching of 2D, depthless images of the landscape. We tested the surface distance hypothesis against these alternatives through studies of children, using environments whose 3D shape and 2D image properties were arranged to enhance or cancel impressions of depth. In the absence of training, children reoriented by subtle differences in perceived surface distance under conditions that challenge current models of 2D-image matching or comparison processes. We provide evidence that children's spontaneous navigation depends on representations of 3D layout geometry.
Collapse
Affiliation(s)
- Sang Ah Lee
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | | | | |
Collapse
|
48
|
Wystrach A, Graham P. View-based matching can be more than image matching: The importance of considering an animal's perspective. Iperception 2012; 3:547-9. [PMID: 23145308 PMCID: PMC3485851 DOI: 10.1068/i0542ic] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/20/2012] [Indexed: 11/07/2022] Open
Abstract
Using vision for navigation is important for many animals and a common debate is the extent to which spatial performance can be explained by "simple" view-based matching strategies. We discuss, in the context of recent work, how confusion between image-matching algorithms and the broader class of view-based navigation strategies, is hindering the debate around the use of vision in spatial cognition. A proper consideration of view-based matching strategies requires an understanding of the visual information available to a given animal within a particular experiment.
Collapse
Affiliation(s)
- Antoine Wystrach
- School of Life Sciences, University of Sussex, Brighton, UK; e-mail:
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, UK; e-mail:
| |
Collapse
|
49
|
Lee SA, Vallortigara G, Ruga V, Sovrano VA. Independent effects of geometry and landmark in a spontaneous reorientation task: a study of two species of fish. Anim Cogn 2012; 15:861-70. [PMID: 22610461 DOI: 10.1007/s10071-012-0512-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 11/24/2022]
Affiliation(s)
- Sang Ah Lee
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38086, Rovereto, TN, Italy.
| | | | | | | |
Collapse
|
50
|
Abstract
Human and non-human animals are capable of using basic geometric information to reorient in an environment. Geometric information includes metric properties associated with spatial surfaces (e.g., short vs. long wall) and left-right directionality or 'sense' (e.g. a long wall to the left of a short wall). However, it remains unclear whether geometric information is encoded by explicitly computing the layout of surface geometry or by matching images of the environment. View-based spatial encoding is generally thought to hold for insect navigation and, very recently, evidence for navigation by geometry has been reported in ants but only in a condition which does not allow the animals to use features located far from the goal. In this study we tested the spatial reorientation abilities of bumblebees (Bombus terrestris). After spatial disorientation, by passive rotation both clockwise and anticlockwise, bumblebees had to find one of the four exit holes located in the corners of a rectangular enclosure. Bumblebees systematically confused geometrically equivalent exit corners (i.e. corners with the same geometric arrangement of metric properties and sense, for example a short wall to the left of a long wall). However, when one wall of the enclosure was a different colour, bumblebees appeared to combine this featural information (either near or far from the goal) with geometric information to find the correct exit corner. Our results show that bumblebees are able to use both geometric and featural information to reorient themselves, even when features are located far from the goal.
Collapse
|