1
|
Perquin MN, van Vugt MK, Hedge C, Bompas A. Temporal Structure in Sensorimotor Variability: A Stable Trait, But What For? COMPUTATIONAL BRAIN & BEHAVIOR 2023; 6:1-38. [PMID: 36618326 PMCID: PMC9810256 DOI: 10.1007/s42113-022-00162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Human performance shows substantial endogenous variability over time, and this variability is a robust marker of individual differences. Of growing interest to psychologists is the realisation that variability is not fully random, but often exhibits temporal dependencies. However, their measurement and interpretation come with several controversies. Furthermore, their potential benefit for studying individual differences in healthy and clinical populations remains unclear. Here, we gather new and archival datasets featuring 11 sensorimotor and cognitive tasks across 526 participants, to examine individual differences in temporal structures. We first investigate intra-individual repeatability of the most common measures of temporal structures - to test their potential for capturing stable individual differences. Secondly, we examine inter-individual differences in these measures using: (1) task performance assessed from the same data, (2) meta-cognitive ratings of on-taskness from thought probes occasionally presented throughout the task, and (3) self-assessed attention-deficit related traits. Across all datasets, autocorrelation at lag 1 and Power Spectra Density slope showed high intra-individual repeatability across sessions and correlated with task performance. The Detrended Fluctuation Analysis slope showed the same pattern, but less reliably. The long-term component (d) of the ARFIMA(1,d,1) model showed poor repeatability and no correlation to performance. Overall, these measures failed to show external validity when correlated with either mean subjective attentional state or self-assessed traits between participants. Thus, some measures of serial dependencies may be stable individual traits, but their usefulness in capturing individual differences in other constructs typically associated with variability in performance seems limited. We conclude with comprehensive recommendations for researchers. Supplementary Information The online version contains supplementary material available at 10.1007/s42113-022-00162-1.
Collapse
Affiliation(s)
- Marlou Nadine Perquin
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
- Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Marieke K. van Vugt
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, Netherlands
| | - Craig Hedge
- School of Psychology, College of Health & Life Sciences, Aston University, Aston, UK
| | - Aline Bompas
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Multifractality in the Movement System When Adapting to Arm Cranking in Wheelchair Athletes, Able-Bodied Athletes, and Untrained People. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Complexity science has helped neuroscientists shed new light on brain-body coordination during movement performance and motor learning in humans. A critical intuition based on monofractal approaches has been a fractal-like coordination in the movement system, more marked in motor-skilled people. Here we aimed to show that heterogeneity in scaling exponents of movements series, literally multifractality, may reflect a special kind of interactions spanning multiple temporal scales at once, which can be grasped by a focus-based multifractal detrended fluctuation analysis. We analyzed multifractality in the variability structure of a 10-min arm cranking movement series repeated as 3 sets a day for 3 days, comparatively with their linearized (phase-randomized) surrogate series in sedentary (SED) untrained people, wheelchair athletes (WATH), and able-bodied athletes (ATH). Arm cranking exercise was chosen to minimize external variations, which tend to interfere with internal origin of variability. Participants were asked to maintain a regular effort and torque output served as the performance variable. Our first hypothesis suggests greater multiscale interactions in trained (WATH, ATH) versus untrained (SED) people, reflected in a wider range of scaling exponents characterizing movement series, providing the system with significant robustness. As a second hypothesis, we addressed a possible advantage in WATH over ATH due to greater motor skills in upper-limbs. Multifractal metrics in original and surrogate series showed ubiquitous, but different, multifractal behaviors in expert (ATH and WATH indistinctively) versus novice (SED) people. Experts exhibited high multifractality during the first execution of the task; then multifractality dropped in following repetitions. We suggest an exacerbated robustness of the movement system coordination in experts when discovering the task. Once task novelty has worn off, poor external sources of variability and limited risks of task failure have been identified, which is reflected in the narrower range of scale interactions, possibly as an energy cost effective adaptation. Multifractal corollaries of movement adaptation may be helpful in sport training and motor rehabilitation programs.
Collapse
|
3
|
Arsac LM. Multifractal Dynamics in Executive Control When Adapting to Concurrent Motor Tasks. Front Physiol 2021; 12:662076. [PMID: 33935808 PMCID: PMC8085344 DOI: 10.3389/fphys.2021.662076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023] Open
Abstract
There is some evidence that an improved understanding of executive control in the human movement system could be gained from explorations based on scale-free, fractal analysis of cyclic motor time series. Such analyses capture non-linear fractal dynamics in temporal fluctuations of motor instances that are believed to reflect how executive control enlist a coordination of multiple interactions across temporal scales between the brain, the body and the task environment, an essential architecture for adaptation. Here by recruiting elite rugby players with high motor skills and submitting them to the execution of rhythmic motor tasks involving legs and arms concurrently, the main attempt was to build on the multifractal formalism of movement control to show a marginal need of effective adaptation in concurrent tasks, and a preserved adaptability despite complexified motor execution. The present study applied a multifractal analytical approach to experimental time series and added surrogate data testing based on shuffled, ARFIMA, Davies&Harte and phase-randomized surrogates, for assessing scale-free behavior in repeated motor time series obtained while combining cycling with finger tapping and with circling. Single-tasking was analyzed comparatively. A focus-based multifractal-DFA approach provided Hurst exponents (H) of individual time series over a range of statistical moments H(q), q = [−15 15]. H(2) quantified monofractality and H(-15)-H(15) provided an index of multifractality. Despite concurrent tasking, participants showed great capacity to keep the target rhythm. Surrogate data testing showed reasonable reliability in using multifractal formalism to decipher movement control behavior. The global (i.e., monofractal) behavior in single-tasks did not change when adapting to dual-task. Multifractality dominated in cycling and did not change when cycling was challenged by upper limb movements. Likewise, tapping and circling behaviors were preserved despite concurrent cycling. It is concluded that the coordinated executive control when adapting to dual-motor tasking is not modified in people having developed great motor skills through physical training. Executive control likely emerged from multiplicative interactions across temporal scales which puts emphasis on multifractal approaches of the movement system to get critical cues on adaptation. Extending such analyses to less skilled people is appealing in the context of exploring healthy and diseased movement systems.
Collapse
Affiliation(s)
- Laurent M Arsac
- Université de Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France
| |
Collapse
|
4
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
5
|
Colley ID, Dean RT. Origins of 1/f noise in human music performance from short-range autocorrelations related to rhythmic structures. PLoS One 2019; 14:e0216088. [PMID: 31059519 PMCID: PMC6502337 DOI: 10.1371/journal.pone.0216088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022] Open
Abstract
1/f fluctuations have been described in numerous physical and biological processes. This noise structure describes an inverse relationship between the intensity and frequency of events in a time series (for example reflected in power spectra), and is believed to indicate long-range dependence, whereby events at one time point influence events many observations later. 1/f has been identified in rhythmic behaviors, such as music, and is typically attributed to long-range correlations. However short-range dependence in musical performance is a well-established finding and past research has suggested that 1/f can arise from multiple continuing short-range processes. We tested this possibility using simulations and time-series modeling, complemented by traditional analyses using power spectra and detrended fluctuation analysis (as often adopted more recently). Our results show that 1/f-type fluctuations in musical contexts may be explained by short-range models involving multiple time lags, and the temporal ranges in which rhythmic hierarchies are expressed are apt to create these fluctuations through such short-range autocorrelations. We also analyzed gait, heartbeat, and resting-state EEG data, demonstrating the coexistence of multiple short-range processes and 1/f fluctuation in a variety of phenomena. This suggests that 1/f fluctuation might not indicate long-range correlations, and points to its likely origins in musical rhythm and related structures.
Collapse
Affiliation(s)
- Ian D. Colley
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
| | - Roger T. Dean
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Harrison SJ, Hough M, Schmid K, Groff BR, Stergiou N. When Coordinating Finger Tapping to a Variable Beat the Variability Scaling Structure of the Movement and the Cortical BOLD Signal are Both Entrained to the Auditory Stimuli. Neuroscience 2018; 392:203-218. [PMID: 29958941 PMCID: PMC8091912 DOI: 10.1016/j.neuroscience.2018.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/13/2023]
Abstract
Rhythmic actions are characterizable as a repeating invariant pattern of movement together with variability taking the form of cycle-to-cycle fluctuations. Variability in behavioral measures is atypically random, and often exhibits serial temporal dependencies and statistical self-similarity in the scaling of variability magnitudes across timescales. Self-similar (i.e. fractal) variability scaling is evident in measures of both brain and behavior. Variability scaling structure can be quantified via the scaling exponent (α) from detrended fluctuation analysis (DFA). Here we study the task of coordinating thumb-finger tapping to the beats of constructed auditory stimuli. We test the hypothesis that variability scaling evident in tap-to-tap intervals as well as in the fluctuations of cortical hemodynamics will become entrained to (i.e. drawn toward) manipulated changes in the variability scaling of a stimulus's beat-to-beat intervals. Consistent with this hypothesis, manipulated changes of the exponent α of the experimental stimuli produced corresponding changes in the exponent α of both tap-to-tap intervals and cortical hemodynamics. The changes in hemodynamics were observed in both motor and sensorimotor cortical areas in the contralateral hemisphere. These results were observed only for the longer timescales of the detrended fluctuation analysis used to measure the exponent α. These findings suggest that complex auditory stimuli engage both brain and behavior at the level of variability scaling structures.
Collapse
Affiliation(s)
- Steven J Harrison
- Department of Kinesiology, University of Connecticut, United States.
| | - Michael Hough
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Kendra Schmid
- Department of Biostatistics, University of Nebraska Medical Center, United States
| | - Boman R Groff
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Nicholas Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, United States
| |
Collapse
|
7
|
Irrmischer M, Poil S, Mansvelder HD, Intra FS, Linkenkaer‐Hansen K. Strong long-range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance. Eur J Neurosci 2018; 48:2674-2683. [PMID: 28858404 PMCID: PMC6221163 DOI: 10.1111/ejn.13672] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Neuronal oscillations exhibit complex amplitude fluctuations with autocorrelations that persist over thousands of oscillatory cycles. Such long-range temporal correlations (LRTC) are thought to reflect neuronal systems poised near a critical state, which would render them capable of quick reorganization and responsive to changing processing demands. When we concentrate, however, the influence of internal and external sources of distraction is better reduced, suggesting that neuronal systems involved with sustained attention could benefit from a shift toward the less volatile sub-critical state. To test these ideas, we recorded electroencephalography (EEG) from healthy volunteers during eyes-closed rest and during a sustained attention task requiring a speeded response to images deviating in their presentation duration. We show that for oscillations recorded during rest, high levels of alpha-band LRTC in the sensorimotor region predicted good reaction-time performance in the attention task. During task execution, however, fast reaction times were associated with high-amplitude beta and gamma oscillations with low LRTC. Finally, we show that reduced LRTC during the attention task compared to the rest condition correlates with better performance, while increased LRTC of oscillations from rest to attention is associated with reduced performance. To our knowledge, this is the first empirical evidence that 'resting-state criticality' of neuronal networks predicts swift behavioral responses in a sensorimotor task, and that steady attentive processing of visual stimuli requires brain dynamics with suppressed temporal complexity.
Collapse
Affiliation(s)
- Mona Irrmischer
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| | - Simon‐Shlomo Poil
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
- NBT Analytics BVAmsterdamThe Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| | - Francesca Sangiuliano Intra
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
- IRCCSDon Gnocchi FoundationMilanItaly
| | - Klaus Linkenkaer‐Hansen
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive Research (CNCR)Amsterdam NeuroscienceVU University Amsterdam1081 HVAmsterdamThe Netherlands
| |
Collapse
|
8
|
Irrmischer M, van der Wal CN, Mansvelder HD, Linkenkaer-Hansen K. Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations. PLoS One 2018; 13:e0196907. [PMID: 29746529 PMCID: PMC5945053 DOI: 10.1371/journal.pone.0196907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/23/2018] [Indexed: 11/24/2022] Open
Abstract
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability.
Collapse
Affiliation(s)
- Mona Irrmischer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, HV Amsterdam, Netherlands
| | - C. Natalie van der Wal
- Vrije Universiteit (VU) Amsterdam, Department Computer Science, Amsterdam, Netherlands
- Centre for Decision Research, University of Leeds Business School, Leeds, United Kingdom
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, HV Amsterdam, Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, HV Amsterdam, Netherlands
| |
Collapse
|
9
|
Ducharme SW, Liddy JJ, Haddad JM, Busa MA, Claxton LJ, van Emmerik RE. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking. Hum Mov Sci 2018; 58:248-259. [DOI: 10.1016/j.humov.2018.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 11/29/2022]
|
10
|
Balasubramaniam R, Hove MJ, Médé B. Factorization of Force and Timing in Sensorimotor Performance: Long-Range Correlation Properties of Two Different Task Goals. Top Cogn Sci 2017; 10:120-132. [DOI: 10.1111/tops.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Affiliation(s)
| | - Michael J. Hove
- Department of Psychological Science; Fitchburg State University
| | - Butovens Médé
- Cognitive & Information Sciences; University of California; Merced
| |
Collapse
|
11
|
Kuznetsov NA, Rhea CK. Power considerations for the application of detrended fluctuation analysis in gait variability studies. PLoS One 2017; 12:e0174144. [PMID: 28323871 PMCID: PMC5360325 DOI: 10.1371/journal.pone.0174144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/24/2017] [Indexed: 12/03/2022] Open
Abstract
The assessment of gait variability using stochastic signal processing techniques such as detrended fluctuation analysis (DFA) has been shown to be a sensitive tool for evaluation of gait alterations due to aging and neuromuscular disease. However, previous studies have suggested that the application of DFA requires relatively long recordings (600 strides), which is difficult when working with clinical populations or older adults. In this paper we propose a model for predicting DFA variance in experimental data and conduct a Monte Carlo simulation to estimate the sample size and number of trials required to detect a change in DFA scaling exponent. We illustrate the model in a simulation to detect a difference of 0.1 (medium effect) between two groups of subjects when using short gait time series (100 to 200 strides) in the context of between- and within-subject designs. We assumed that the variance of DFA scaling exponent arises due to individual differences, time series length, and experimental error. Results showed that sample sizes required to achieve acceptable power of 80% are practically feasible, especially when using within-subject designs. For example, to detect a group difference in the DFA scaling exponent of 0.1, it would require either 25 subjects and 2 trials per subject or 12 subjects and 4 trials per subject using a within-subject design. We then compared plausibility of such power predictions to the empirically observed power from a study that required subjects to synchronize with a persistent fractal metronome. The results showed that the model adequately predicted the empirical pattern of results. Our power simulations could be used in conjunction with previous design guidelines in the literature when planning new gait variability experiments.
Collapse
Affiliation(s)
- Nikita A. Kuznetsov
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- * E-mail:
| | - Christopher K. Rhea
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| |
Collapse
|
12
|
Paired Synchronous Rhythmic Finger Tapping without an External Timing Cue Shows Greater Speed Increases Relative to Those for Solo Tapping. Sci Rep 2017; 7:43987. [PMID: 28276461 PMCID: PMC5343470 DOI: 10.1038/srep43987] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners' tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing.
Collapse
|
13
|
Dimitriadis SI, Linden D. Modulation of brain criticality via suppression of EEG long-range temporal correlations (LRTCs) in a closed-loop neurofeedback stimulation. Clin Neurophysiol 2016; 127:2878-2881. [PMID: 27323657 DOI: 10.1016/j.clinph.2016.05.359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Stavros I Dimitriadis
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, CF24 4HQ, UK; Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK; Artificial Intelligence and Information Analysis Laboratory, Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece; NeuroInformatics Group, AUTH, Thessaloniki, Greece.
| | - David Linden
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, CF24 4HQ, UK; Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
14
|
|
15
|
Hirvonen J, Palva S. Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness. Hum Brain Mapp 2015; 37:311-26. [PMID: 26485310 DOI: 10.1002/hbm.23033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept.
Collapse
Affiliation(s)
- Jonni Hirvonen
- Neuroscience Center, University of Helsinki, Finland.,BioMag Laboratory, HUS Medical Imaging Center, Finland
| | - Satu Palva
- Neuroscience Center, University of Helsinki, Finland
| |
Collapse
|
16
|
Likens AD, Fine JM, Amazeen EL, Amazeen PG. Experimental control of scaling behavior: what is not fractal? Exp Brain Res 2015; 233:2813-21. [PMID: 26070902 DOI: 10.1007/s00221-015-4351-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
The list of psychological processes thought to exhibit fractal behavior is growing. Although some might argue that the seeming ubiquity of fractal patterns illustrates their significance, unchecked growth of that list jeopardizes their relevance. It is important to identify when a single behavior is and is not fractal in order to make meaningful conclusions about the processes underlying those patterns. The hypothesis tested in the present experiment is that fractal patterns reflect the enactment of control. Participants performed two steering tasks: steering on a straight track and steering on a circular track. Although each task could be accomplished by holding the steering wheel at a constant angle, steering around a curve may require more constant control, at least from a psychological standpoint. Results showed that evidence for fractal behavior was strongest for the circular track; straight tracks showed evidence of two scaling regions. We argue from those results that, going forward, the goal of the fractal literature should be to bring scaling behavior under experimental control.
Collapse
Affiliation(s)
- Aaron D Likens
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ, 85287, USA.
| | - Justin M Fine
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ, 85287, USA
| | - Eric L Amazeen
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ, 85287, USA
| | - Polemnia G Amazeen
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ, 85287, USA
| |
Collapse
|
17
|
Nourrit-Lucas D, Tossa AO, Zélic G, Delignières D. Learning, motor skill, and long-range correlations. J Mot Behav 2014; 47:182-9. [PMID: 25496662 DOI: 10.1080/00222895.2014.967655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Long-range correlations have been evidenced in a number of experiments, generally using overlearned and overpracticed tasks. The authors hypothesized that long-range correlation could represent the byproduct of learning. They analyzed the series of periods produced by a group of expert and a group of novices during prolonged trials on a ski simulator. Results showed a very low variability in expert's series, as compared to novices. Fractal analyses showed that fluctuations were significantly more structured and correlated in experts. These results suggest that learning could be conceived as the progressive installation of complexity in the system.
Collapse
|
18
|
Making sense of the noise: Replication difficulties of Correll's (2008) modulation of 1/f noise in a racial bias task. Psychon Bull Rev 2014; 22:1135-41. [PMID: 25384891 DOI: 10.3758/s13423-014-0757-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Correll (Journal of Personality and Social Psychology, 94, 48-59, 2008; Study 2) found that instructions to use or avoid race information decreased the emission of 1/f noise in a weapon identification task (WIT). These results suggested that 1/f noise in racial bias tasks reflected an effortful deliberative process, providing new insights regarding the mechanisms underlying implicit racial biases. Given the potential theoretical and applied importance of understanding the psychological processes underlying implicit racial biases - and in light of the growing demand for independent direct replications of findings to ensure the cumulative nature of our science - we attempted to replicate Correll's finding in two high-powered studies. Despite considerable effort to closely duplicate all procedural and methodological details of the original study (i.e., same cover story, experimental manipulation, implicit measure task, original stimuli, task instructions, sampling frame, population, and statistical analyses), both replication attempts were unsuccessful in replicating the original finding challenging the theoretical account that 1/f noise in racial bias tasks reflects a deliberative process. However, the emission of 1/f noise did consistently emerge across samples in each of our conditions. Hence, future research is needed to clarify the psychological significance of 1/f noise in racial bias tasks.
Collapse
|
19
|
Rhea CK, Kiefer AW, Wittstein MW, Leonard KB, MacPherson RP, Wright WG, Haran FJ. Fractal gait patterns are retained after entrainment to a fractal stimulus. PLoS One 2014; 9:e106755. [PMID: 25221981 PMCID: PMC4164455 DOI: 10.1371/journal.pone.0106755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
Previous work has shown that fractal patterns in gait can be altered by entraining to a fractal stimulus. However, little is understood about how long those patterns are retained or which factors may influence stronger entrainment or retention. In experiment one, participants walked on a treadmill for 45 continuous minutes, which was separated into three phases. The first 15 minutes (pre-synchronization phase) consisted of walking without a fractal stimulus, the second 15 minutes consisted of walking while entraining to a fractal visual stimulus (synchronization phase), and the last 15 minutes (post-synchronization phase) consisted of walking without the stimulus to determine if the patterns adopted from the stimulus were retained. Fractal gait patterns were strengthened during the synchronization phase and were retained in the post-synchronization phase. In experiment two, similar methods were used to compare a continuous fractal stimulus to a discrete fractal stimulus to determine which stimulus type led to more persistent fractal gait patterns in the synchronization and post-synchronization (i.e., retention) phases. Both stimulus types led to equally persistent patterns in the synchronization phase, but only the discrete fractal stimulus led to retention of the patterns. The results add to the growing body of literature showing that fractal gait patterns can be manipulated in a predictable manner. Further, our results add to the literature by showing that the newly adopted gait patterns are retained for up to 15 minutes after entrainment and showed that a discrete visual stimulus is a better method to influence retention.
Collapse
Affiliation(s)
- Christopher K Rhea
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Adam W Kiefer
- Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America; Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Matthew W Wittstein
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Kelsey B Leonard
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Ryan P MacPherson
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - W Geoffrey Wright
- Department of Physical Therapy, Temple University, Philadelphia, Pennsylvania, United States of America; Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - F Jay Haran
- Biomedical Research & Operations Department, Navy Experimental Diving Unit, Panama City Beach, Florida, United States of America
| |
Collapse
|
20
|
Rhea CK, Kiefer AW, D’Andrea SE, Warren WH, Aaron RK. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics. Hum Mov Sci 2014; 36:20-34. [DOI: 10.1016/j.humov.2014.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/06/2013] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
21
|
Ross JM, Balasubramaniam R. Physical and neural entrainment to rhythm: human sensorimotor coordination across tasks and effector systems. Front Hum Neurosci 2014; 8:576. [PMID: 25136306 PMCID: PMC4118030 DOI: 10.3389/fnhum.2014.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/14/2014] [Indexed: 11/13/2022] Open
Abstract
The human sensorimotor system can be readily entrained to environmental rhythms, through multiple sensory modalities. In this review, we provide an overview of theories of timekeeping that make this neuroentrainment possible. First, we present recent evidence that contests the assumptions made in classic timekeeper models. The role of state estimation, sensory feedback and movement parameters on the organization of sensorimotor timing are discussed in the context of recent experiments that examined simultaneous timing and force control. This discussion is extended to the study of coordinated multi-effector movements and how they may be entrained.
Collapse
Affiliation(s)
- Jessica Marie Ross
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California Merced, CA, USA
| | - Ramesh Balasubramaniam
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California Merced, CA, USA
| |
Collapse
|
22
|
Delignières D, Marmelat V. Degeneracy and long-range correlations. CHAOS (WOODBURY, N.Y.) 2013; 23:043109. [PMID: 24387548 DOI: 10.1063/1.4825250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Degeneracy is a ubiquitous property of complex adaptive systems, which refers to the ability of structurally different components to perform the same function in some conditions and different functions in other conditions. Here, we suppose a causal link between the level of degeneracy in the system and the strength of long-range correlations in its behavior. In a numerical experiment, we manipulated degeneracy through the number of networks available in a model composed of a chain of correlated networks over which a series of random jumps are performed. Results showed that correlations in the outcome series increased with the number of available networks, and that a minimal threshold of degeneracy was required to generate long-range correlations. We conclude that degeneracy could underlie the presence of long-range correlations in the outcome series produced by complex systems. In turn, we suggest that quantifying long-range correlations could allow to assess the level of degeneracy of the system. Degeneracy affords a maybe more intuitive way than former hypotheses for understanding the effects of complexity on essential properties such as robustness and adaptability.
Collapse
Affiliation(s)
- D Delignières
- EA 2991 Movement To Health, Euromov, University Montpellier 1, 34090 Montpellier, France
| | - V Marmelat
- EA 2991 Movement To Health, Euromov, University Montpellier 1, 34090 Montpellier, France
| |
Collapse
|
23
|
Long-range temporal correlations in resting-state α oscillations predict human timing-error dynamics. J Neurosci 2013; 33:11212-20. [PMID: 23825424 DOI: 10.1523/jneurosci.2816-12.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human behavior is imperfect. This is notably clear during repetitive tasks in which sequences of errors or deviations from perfect performance result. These errors are not random, but show patterned fluctuations with long-range temporal correlations that are well described using power-law spectra P(f)∝1/f(β), where β is the power-law scaling exponent describing the decay in temporal correlations. The neural basis of temporal correlations in such behaviors is not known. Interestingly, long-range temporal correlations are a hallmark of amplitude fluctuations in resting-state neuronal oscillations. Here, we investigated whether the temporal dynamics in brain and behavior are related. Thirty-nine subjects' eyes-open rest EEG was measured. Next, subjects reproduced without feedback a 1 s interval by tapping with their right index finger. In line with previous reports, we found evidence for the presence of long-range temporal correlations both in the amplitude modulation of resting-state oscillations in multiple frequency bands and in the timing-error sequences. Frequency scaling exponents of finger tapping and amplitude modulation of oscillations exhibited large individual differences. Neuronal dynamics of resting-state alpha-band oscillations (9-13 Hz) recorded at precentral sites strongly predicted scaling exponents of tapping behavior. The results suggest that individual variation in resting-state brain dynamics offer a neural explanation for individual variation in the error dynamics of human behavior.
Collapse
|
24
|
Lorås H, Stensdotter AK, Öhberg F, Sigmundsson H. Individual differences in timing of discrete and continuous movements: a dimensional approach. PSYCHOLOGICAL RESEARCH 2013; 78:289-99. [DOI: 10.1007/s00426-013-0496-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/16/2013] [Indexed: 11/28/2022]
|
25
|
Riley MA, Bonnette S, Kuznetsov N, Wallot S, Gao J. A tutorial introduction to adaptive fractal analysis. Front Physiol 2012; 3:371. [PMID: 23060804 PMCID: PMC3460370 DOI: 10.3389/fphys.2012.00371] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 11/30/2022] Open
Abstract
The authors present a tutorial description of adaptive fractal analysis (AFA). AFA utilizes an adaptive detrending algorithm to extract globally smooth trend signals from the data and then analyzes the scaling of the residuals to the fit as a function of the time scale at which the fit is computed. The authors present applications to synthetic mathematical signals to verify the accuracy of AFA and demonstrate the basic steps of the analysis. The authors then present results from applying AFA to time series from a cognitive psychology experiment on repeated estimation of durations of time to illustrate some of the complexities of real-world data. AFA shows promise in dealing with many types of signals, but like any fractal analysis method there are special challenges and considerations to take into account, such as determining the presence of linear scaling regions.
Collapse
Affiliation(s)
- Michael A Riley
- Department of Psychology, Center for Cognition, Action, and Perception, University of Cincinnati Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|