1
|
Uyeno C, Zhang R, Cornwell J, Teramoto M, Boo M, Lumba-Brown A. Acute Eye-Tracking Changes Correlated With Vestibular Symptom Provocation Following Mild Traumatic Brain Injury. Clin J Sport Med 2024; 34:411-416. [PMID: 38702871 DOI: 10.1097/jsm.0000000000001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/21/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES To quantify norms and changes in eye-tracking proficiency, and determine vestibular symptom correlations in varsity college athletes following acute mild traumatic brain injury (mTBI). We hypothesized that mTBI impacts central coordination between the vestibular and oculomotor systems with resultant changes in eye-tracking proficiency that are correlated with vestibular symptom provocation. DESIGN Retrospective cohort study. SETTING Sports medicine care at a single institution. PATIENTS One hundred and nineteen college athletes diagnosed with mTBI by a physician between 2013 and 2019. INTERVENTIONS N/A. MAIN OUTCOME MEASURES Standard deviation of tangential error, standard deviation of radian error, mean phase error, and horizontal gain from virtual reality-based, circular eye-tracking goggles used at baseline and within 72 hours post-mTBI. Headache, dizziness, nausea, and fogginess provocation after the Vestibular Ocular Motor Screening (VOMS) smooth pursuits subtest compared with pretest baseline, assessed within 72 hours post-mTBI. RESULTS One hundred and nineteen college athletes (N = 56 women and 63 men) aged 18 to 24 years sustained a total of 177 mTBI. Forty-four percent of athletes displayed abnormal eye-tracking on at least 1 eye-tracking measure following acute mTBI compared with their baseline. From the VOMS, horizontal gain showed medium-sized to large-sized positive correlations with headache ( r = 0.34) and dizziness ( r = 0.54), respectively. Mean phase error showed a medium-sized negative correlation with nausea ( r = -0.32) on the VOMS. CONCLUSIONS Eye-tracking proficiency was impaired and correlated with vestibular symptom provocation following acute mTBI in college athletes. Future research should examine eye-tracking proficiency testing in other acute care settings to support mTBI diagnosis.
Collapse
Affiliation(s)
| | - Rachel Zhang
- Department of Emergency Medicine, Stanford University, Stanford, California
| | - Jordan Cornwell
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Masaru Teramoto
- Department of Physical Medicine & Rehabilitation, University of Utah, Salt Lake City, Utah; and
| | - Marie Boo
- Department of Health & Performance, San Jose Earthquakes, San Jose, California
| | - Angela Lumba-Brown
- Department of Emergency Medicine, Stanford University, Stanford, California
| |
Collapse
|
2
|
Spielman LA, Maruta J, Ghajar J. Dual statistical models link baseline visual attention measure to risk for significant symptomatic concussion in sports. Concussion 2023; 8:CNC112. [PMID: 38855758 PMCID: PMC10945612 DOI: 10.2217/cnc-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/01/2023] [Indexed: 06/11/2024] Open
Abstract
Aim Athletic pre-season testing can establish functional baseline for comparison following concussion. Whether impacts of future concussions may be foretold by such testing is little known. Materials & methods Two sets of models for a significant burden of concussion were generated: a traditional approach using a series of logistic regressions, and a penalized regression approach using elastic net. Results 3091 youth and adult athletes were baseline-assessed. 90 subsequently experienced concussion and 35 were still experiencing a significant burden of concussion when tested within two weeks. Both models associated prior history of head injury and visual attention-related metrics with a significant burden of concussion. Conclusion Pre-season testing of visual attention may identify athletes who are at risk for significant sports-related concussion.
Collapse
Affiliation(s)
- Lisa A Spielman
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Maruta
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
3
|
Pearce AJ, Daly E, Ryan L, King D. Reliability of a Smooth Pursuit Eye-Tracking System (EyeGuide Focus) in Healthy Adolescents and Adults. J Funct Morphol Kinesiol 2023; 8:83. [PMID: 37367247 DOI: 10.3390/jfmk8020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common brain injury, seen in sports, fall, vehicle, or workplace injuries. Concussion is the most common type of mTBI. Assessment of impairments from concussion is evolving, with oculomotor testing suggested as a key component in a multimodality diagnostic protocol. The aim of this study was to evaluate the reliability of one eye-tracking system, the EyeGuide Focus. A group of 75 healthy adolescent and adult participants (adolescents: n = 28; female = 11, male = 17, mean age 16.5 ± 1.4 years; adults n = 47; female = 22; male = 25, mean age 26.7 ± 7.0 years) completed three repetitions of the EyeGuide Focus within one session. Intraclass correlation coefficient (ICC) analysis showed the EyeGuide Focus had overall good reliability (ICC 0.79, 95%CI: 0.70, 0.86). However, a familiarization effect showing improvements in subsequent trials 2 (9.7%) and 3 (8.1%) was noticeable in both cohorts (p < 0.001) with adolescent participants showing greater familiarization effects than adults (21.7% vs. 13.1%). No differences were observed between sexes (p = 0.69). Overall, this is the first study to address the concern regarding a lack of published reliability studies for the EyeGuide Focus. Results showed good reliability, suggesting that oculomotor pursuits should be part of a multimodality assessment protocol, but the observation of familiarization effects suggests that smooth-pursuit testing using this device has the potential to provide a biologically-based interpretation of the maturation of the oculomotor system, as well as its relationship to multiple brain regions in both health and injury.
Collapse
Affiliation(s)
- Alan J Pearce
- College of Sport Health Engineering, La Trobe University, Melbourne 3086, Australia
| | - Ed Daly
- School of Science & Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Lisa Ryan
- School of Science & Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Doug King
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1142, New Zealand
- Wolfson Research Institute for Health and Wellbeing, Department of Sport and Exercise Sciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
4
|
Maruta J, Spielman LA, Ghajar J. Visuomotor Synchronization: Military Normative Performance. Mil Med 2023; 188:e484-e491. [PMID: 34318327 DOI: 10.1093/milmed/usab320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Cognitive processes such as perception and reasoning are preceded and dependent on attention. Because of the close overlap between neural circuits of attention and eye movement, attention may be objectively quantified with recording of eye movements during an attention-dependent task. Our previous work demonstrated that performance scores on a circular visual tracking task that requires dynamic synchronization of the gaze with the target motion can be impacted by concussion, sleep deprivation, and attention deficit/hyperactivity disorder. The current study examined the characteristics of performance on a standardized predictive visual tracking task in a large sample from a U.S. Military population to provide military normative data. MATERIALS AND METHODS The sample consisted of 1,594 active duty military service members of either sex aged 18-29 years old who were stationed at Fort Hood Army Base. The protocol was reviewed and approved by the U.S. Army Medical Research and Materiel Command Institutional Review Board. Demographic, medical, and military history data were collected using questionnaires, and performance-based data were collected using a circular visual tracking test and Trail Making Test. Differences in visual tracking performance by demographic characteristics were examined with a multivariate analysis of variance, as well as a Kolmogorov-Smirnov test and a rank-sum test. Associations with other measures were examined with a rank-sum test or Spearman correlations. RESULTS Robust sex differences in visual tracking performance were found across the various statistical models, as well as age differences in several isolated comparisons. Accordingly, norms of performance scores, described in terms of percentile standings, were developed adjusting for age and sex. The effects of other measures on visual tracking performance were small or statistically non-significant. An examination of the score distributions of various metrics suggested that strategies preferred by men and women may optimize different aspects of visual tracking performance. CONCLUSION This large-scale quantification of attention, using dynamic visuomotor synchronization performance, provides rigorously characterized age- and sex-based military population norms. This study establishes analytics for assessing normal and impaired attention and detecting changes within individuals over time. Practical applications for combat readiness and surveillance of attention impairment from sleep insufficiency, concussion, medication, or attention disorders will be enhanced with portable, easily accessible, fast, and reliable dynamic eye-tracking technologies.
Collapse
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Brain Trauma Foundation, Palo Alto, CA 94301, USA
| | - Lisa A Spielman
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Brain Trauma Foundation, Palo Alto, CA 94301, USA
| | - Jamshid Ghajar
- Brain Trauma Foundation, Palo Alto, CA 94301, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Brain Performance Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
5
|
Williamson JR, Sturim D, Vian T, Lacirignola J, Shenk TE, Yuditskaya S, Rao HM, Talavage TM, Heaton KJ, Quatieri TF. Using Dynamics of Eye Movements, Speech Articulation and Brain Activity to Predict and Track mTBI Screening Outcomes. Front Neurol 2021; 12:665338. [PMID: 34295299 PMCID: PMC8289895 DOI: 10.3389/fneur.2021.665338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Repeated subconcussive blows to the head during sports or other contact activities may have a cumulative and long lasting effect on cognitive functioning. Unobtrusive measurement and tracking of cognitive functioning is needed to enable preventative interventions for people at elevated risk of concussive injury. The focus of the present study is to investigate the potential for using passive measurements of fine motor movements (smooth pursuit eye tracking and read speech) and resting state brain activity (measured using fMRI) to complement existing diagnostic tools, such as the Immediate Post-concussion Assessment and Cognitive Testing (ImPACT), that are used for this purpose. Thirty-one high school American football and soccer athletes were tracked through the course of a sports season. Hypotheses were that (1) measures of complexity of fine motor coordination and of resting state brain activity are predictive of cognitive functioning measured by the ImPACT test, and (2) within-subject changes in these measures over the course of a sports season are predictive of changes in ImPACT scores. The first principal component of the six ImPACT composite scores was used as a latent factor that represents cognitive functioning. This latent factor was positively correlated with four of the ImPACT composites: verbal memory, visual memory, visual motor speed and reaction speed. Strong correlations, ranging between r = 0.26 and r = 0.49, were found between this latent factor and complexity features derived from each sensor modality. Based on a regression model, the complexity features were combined across sensor modalities and used to predict the latent factor on out-of-sample subjects. The predictions correlated with the true latent factor with r = 0.71. Within-subject changes over time were predicted with r = 0.34. These results indicate the potential to predict cognitive performance from passive monitoring of fine motor movements and brain activity, offering initial support for future application in detection of performance deficits associated with subconcussive events.
Collapse
Affiliation(s)
- James R Williamson
- Human Health and Performance Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| | - Doug Sturim
- Human Health and Performance Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| | - Trina Vian
- Counter-WMD Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| | - Joseph Lacirignola
- Counter-WMD Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| | - Trey E Shenk
- Advanced RF Techniques & Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| | - Sophia Yuditskaya
- Human Health and Performance Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| | - Hrishikesh M Rao
- Human Health and Performance Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| | - Thomas M Talavage
- Electrical and Computer Engineering/Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kristin J Heaton
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Thomas F Quatieri
- Human Health and Performance Systems, MIT Lincoln Laboratory, Lexington, MA, United States
| |
Collapse
|
6
|
Boo M, Matheson G, Lumba-Brown A. Smooth Pursuit Eye-Movement Abnormalities Associated With Cervical Spine Whiplash: A Scientific Review and Case Report. Cureus 2020; 12:e9872. [PMID: 32963912 PMCID: PMC7500708 DOI: 10.7759/cureus.9872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Whiplash injuries may disrupt normal cervical afferent and efferent projections. Oculomotor abnormalities have been reported in chronic whiplash cases, but there is limited knowledge of their presence in acute whiplash and how acute assessment may target early intervention. We present a literature review and case study of a 22-year-old female presenting with an acute concussion and whiplash secondary to a high-speed motor vehicle collision. Smooth pursuit eye-movement abnormalities were observed in relative cervical rotation in the setting of clinical examination of cervicogenic dysfunction. Treatment was focused on cervical manual therapy. While concussive symptoms resolved after seven days, eye-tracking showed a mild improvement and continued to exist in relationship with cervicogenic dysfunction. After completing physical therapy twice weekly for two weeks and in-home exercises, clinical signs and symptoms of whiplash-associated cervicogenic dysfunction and abnormal smooth pursuit eye-movement resolved across all cervical positions. This case highlights the need for ocular-motor impairment assessment following acute whiplash, specifically during cervical rotation. Early intervention should focus on cervical manual therapy and may be important in supporting altered cervical afferents causing oculomotor dysfunctions following acute whiplash.
Collapse
Affiliation(s)
- Marie Boo
- Sports Medicine, Stanford University, Stanford, USA
| | | | | |
Collapse
|
7
|
Sundaram V, Ding VY, Desai M, Lumba-Brown A, Little J. Reliable sideline ocular-motor assessment following exercise in healthy student athletes. J Sci Med Sport 2019; 22:1287-1291. [DOI: 10.1016/j.jsams.2019.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
|
8
|
Stone LS, Tyson TL, Cravalho PF, Feick NH, Flynn-Evans EE. Distinct pattern of oculomotor impairment associated with acute sleep loss and circadian misalignment. J Physiol 2019; 597:4643-4660. [PMID: 31389043 PMCID: PMC6852126 DOI: 10.1113/jp277779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 11/29/2022] Open
Abstract
Key points Inadequate sleep and irregular work schedules have not only adverse consequences for individual health and well‐being, but also enormous economic and safety implications for society as a whole. This study demonstrates that visual motion processing and coordinated eye movements are significantly impaired when performed after sleep loss and during the biological night, and thus may be contributing to human error and accidents. Because affected individuals are often unaware of their sensorimotor and cognitive deficits, there is a critical need for non‐invasive, objective indicators of mild, yet potentially unsafe, impairment due to disrupted sleep or biological rhythms. Our findings show that a set of eye‐movement measures can be used to provide sensitive and reliable indicators of such mild neural impairments.
Abstract Sleep loss and circadian misalignment have long been known to impair human cognitive and motor performance with significant societal and health consequences. It is well known that human reaction time to a visual cue is impaired following sleep loss and circadian misalignment, but it has remained unclear how more complex visuomotor control behaviour is altered under these conditions. In this study, we measured 14 parameters of the voluntary ocular tracking response of 12 human participants (six females) to systematically examine the effects of sleep loss and circadian misalignment using a constant routine 24‐h acute sleep‐deprivation paradigm. The combination of state‐of‐the‐art oculometric and sleep‐research methodologies allowed us to document, for the first time, large changes in many components of pursuit, saccades and visual motion processing as a function of time awake and circadian phase. Further, we observed a pattern of impairment across our set of oculometric measures that is qualitatively different from that observed previously with other mild neural impairments. We conclude that dynamic vision and visuomotor control exhibit a distinct pattern of impairment linked with time awake and circadian phase. Therefore, a sufficiently broad set of oculometric measures could provide a sensitive and specific behavioural biomarker of acute sleep loss and circadian misalignment. We foresee potential applications of such oculometric biomarkers assisting in the assessment of readiness‐to‐perform higher risk tasks and in the characterization of sub‐clinical neural impairment in the face of a multiplicity of potential risk factors, including disrupted sleep and circadian rhythms. Inadequate sleep and irregular work schedules have not only adverse consequences for individual health and well‐being, but also enormous economic and safety implications for society as a whole. This study demonstrates that visual motion processing and coordinated eye movements are significantly impaired when performed after sleep loss and during the biological night, and thus may be contributing to human error and accidents. Because affected individuals are often unaware of their sensorimotor and cognitive deficits, there is a critical need for non‐invasive, objective indicators of mild, yet potentially unsafe, impairment due to disrupted sleep or biological rhythms. Our findings show that a set of eye‐movement measures can be used to provide sensitive and reliable indicators of such mild neural impairments.
Collapse
Affiliation(s)
- Leland S Stone
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Terence L Tyson
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
9
|
Working memory load improves diagnostic performance of smooth pursuit eye movement in mild traumatic brain injury patients with protracted recovery. Sci Rep 2019; 9:291. [PMID: 30670708 PMCID: PMC6342945 DOI: 10.1038/s41598-018-36286-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/14/2018] [Indexed: 11/09/2022] Open
Abstract
Smooth pursuit eye movements have been investigated as a diagnostic tool for mild traumatic brain injury (mTBI). However, the degree to which smooth pursuit differentiates mTBI patients from healthy controls (i.e. its diagnostic performance) is only moderate. Our goal was to establish if simultaneous performance of smooth pursuit and a working memory task increased the diagnostic performance of pursuit metrics following mTBI. We integrated an n-back task with two levels of working memory load into a pursuit target, and tested single- and dual-task pursuit in mTBI patients and healthy controls. We assessed pursuit using measures of velocity accuracy, positional accuracy and positional variability. The mTBI group had higher pursuit variability than the control group in all conditions. Performing a concurrent 1-back task decreased pursuit variability for both the mTBI and control groups. Performing a concurrent 2-back task produced differential effects between the groups: Pursuit variability was significantly decreased in the control group, but not in the mTBI group. Diagnostic indices were improved when pursuit was combined with the 2-back task, and increased by 20% for the most sensitive variable. Smooth pursuit with simultaneous working memory load may be a superior diagnostic tool for mTBI than measuring smooth pursuit alone.
Collapse
|
10
|
Colley ID, Varlet M, MacRitchie J, Keller PE. The influence of visual cues on temporal anticipation and movement synchronization with musical sequences. Acta Psychol (Amst) 2018; 191:190-200. [PMID: 30308442 DOI: 10.1016/j.actpsy.2018.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
Music presents a complex case of movement timing, as one to several dozen musicians coordinate their actions at short time-scales. This process is often directed by a conductor who provides a visual beat and guides the ensemble through tempo changes. The current experiment tested the ways in which audio-motor coordination is influenced by visual cues from a conductor's gestures, and how this influence might manifest in two ways: movements used to produce sound related to the music, and movements of the upper-body that do not directly affect sound output. We designed a virtual conductor that was derived from morphed motion capture recordings of human conductors. Two groups of participants (29 musicians and 28 nonmusicians, to test the generalizability of visuo-motor synchronization to non-experts) were shown the virtual conductor, a simple visual metronome, or a stationary circle while completing a drumming task that required synchronization with tempo-changing musical sequences. We measured asynchronies and temporal anticipation in the drumming task, as well as participants' upper-body movement using motion capture. Drumming results suggest the conductor generally improves synchronization by facilitating anticipation of tempo changes in the music. Motion capture results showed that the conductor visual cue elicited more structured head movements than the other two visual cues for nonmusicians only. Multiple regression analysis showed that the nonmusicians with less rigid movement and high anticipation had lower asynchronies. Thus, the visual cues provided by a conductor might serve to facilitate temporal anticipation and more synchronous movement in the general population, but might also cause rigid ancillary movements in some non-experts.
Collapse
|
11
|
Maruta J, Spielman LA, Rajashekar U, Ghajar J. Association of Visual Tracking Metrics With Post-concussion Symptomatology. Front Neurol 2018; 9:611. [PMID: 30093880 PMCID: PMC6070608 DOI: 10.3389/fneur.2018.00611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Attention impairment may provide a cohesive neurobiological explanation for clusters of clinical symptoms that occur after a concussion; therefore, objective quantification of attention is needed. Visually tracking a moving target is an attention-dependent sensorimotor function, and eye movement can be recorded easily and objectively to quantify performance. Our previous work suggested the utility of gaze-target synchronization metrics of a predictive visual tracking task in concussion screening and recovery monitoring. Another objectively quantifiable performance measure frequently suggested for concussion screening is simple visuo-manual reaction time (simple reaction time, SRT). Here, we used visual tracking and SRT tasks to assess changes between pre- and within-2-week post-concussion performances and explore their relationships to post-concussion symptomatology. Athletes participating in organized competitive sports were recruited. Visual tracking and SRT records were collected from the recruited athlete pool as baseline measures over a 4-year period. When athletes experienced a concussion, they were re-assessed within 2 weeks of their injury. We present the data from a total of 29 concussed athletes. Post-concussion symptom burden was assessed with the Rivermead Post-Concussion Symptoms Questionnaire and subscales of the Brain Injury Screening Questionnaire. Post-concussion changes in visual tracking and SRT performance were examined using a paired t-test. Correlations of changes in visual tracking and SRT performance to symptom burden were examined using Pearson's coefficients. Post-concussion changes in visual tracking performance were not consistent among the athletes. However, changes in several visual tracking metrics had moderate to strong correlations to symptom scales (r up to 0.68). On the other hand, while post-concussion SRT performance was reduced (p < 0.01), the changes in the performance metrics were not meaningfully correlated to symptomatology (r ≤ 0.33). Results suggest that visual tracking performance metrics reflect clinical symptoms when assessed within 2 weeks of concussion. Evaluation of concussion requires assessments in multiple domains because the clinical profiles are heterogeneous. While most individuals show recovery within a week of injury, others experience prolonged recovery periods. Visual tracking performance metrics may serve as a biomarker of debilitating symptoms of concussion implicating attention as a root cause of such pathologies.
Collapse
Affiliation(s)
- Jun Maruta
- Brain Trauma Foundation, New York, NY, United States.,Department of Neurosurgery, Stanford University, Stanford, CA, United States.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Jamshid Ghajar
- Brain Trauma Foundation, New York, NY, United States.,Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
The effects of enhanced attention and working memory on smooth pursuit eye movement. Exp Brain Res 2017; 236:485-495. [DOI: 10.1007/s00221-017-5146-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
13
|
Maruta J, Spielman LA, Tseretopoulos ID, Hezghia A, Ghajar J. Possible Medication-Resistant Deficits in Adult ADHD. J Atten Disord 2017; 21:1169-1179. [PMID: 24970719 DOI: 10.1177/1087054714538659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The nature of ADHD, especially in adulthood, is not well-understood. Therefore, we explored subcomponents of attention in adult ADHD. METHOD Twenty-three adults with ADHD were tested on neurocognitive and visual tracking performance both while on their regular prescription stimulant medication and while abstaining from the medication for 1 day. Pairwise comparisons to 46 two-for-one matched normal controls were made to detect medication-resistant effects of ADHD, and within-participant comparisons were made to detect medication-sensitive effects in patients. RESULTS Even when on medication, patients performed more poorly than controls on a spatial working memory task, and on visual tracking and simple reaction time tasks immediately following other attention-demanding tasks. Patients' visual tracking performance degraded while off-medication in a manner consistent with reduced vigilance. CONCLUSION There may be persistent cognitive impairments in adult ADHD despite medication. In addition, the benefit of stimulants seems reduced under cognitive fatigue.
Collapse
Affiliation(s)
- Jun Maruta
- 1 Brain Trauma Foundation, New York, NY, USA
| | | | | | | | - Jamshid Ghajar
- 1 Brain Trauma Foundation, New York, NY, USA.,2 Stanford University School of Medicine, CA, USA
| |
Collapse
|
14
|
Maruta J, Spielman LA, Rajashekar U, Ghajar J. Visual Tracking in Development and Aging. Front Neurol 2017; 8:640. [PMID: 29250026 PMCID: PMC5714854 DOI: 10.3389/fneur.2017.00640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 12/25/2022] Open
Abstract
A moving target is visually tracked with a combination of smooth pursuit and saccades. Human visual tracking eye movement develops through early childhood and adolescence, and declines in senescence. However, the knowledge regarding performance changes over the life course is based on data from distinct age groups in isolation using different procedures, and thus is fragmented. We sought to describe the age-dependence of visual tracking performance across a wide age range and compare it to that of simple visuo-manual reaction time. We studied a cross-sectional sample of 143 subjects aged 7-82 years old (37% male). Eye movements were recorded using video-oculography, while subjects viewed a computer screen and tracked a small target moving along a circular trajectory at a constant speed. For simple reaction time (SRT) measures, series of key presses that subjects made in reaction to cue presentation on a computer monitor were recorded using a standard software. The positional precision and smooth pursuit velocity gain of visual tracking followed a U-shaped trend over age, with best performances achieved between the ages of 20 and 50 years old. A U-shaped trend was also found for mean reaction time in agreement with the existing literature. Inter-individual variability was evident at any age in both visual tracking and reaction time metrics. Despite the similarity in the overall developmental and aging trend, correlations were not found between visual tracking and reaction time performances after subtracting the effects of age. Furthermore, while a statistically significant difference between the sexes was found for mean SRT in the sample, a similar difference was not found for any of the visual tracking metrics. Therefore, the cognitive constructs and their neural substrates supporting visual tracking and reaction time performances appear largely independent. In summary, age is an important covariate for visual tracking performance, especially for a pediatric population. Since visual tracking performance metrics may provide signatures of abnormal neurological or cognitive states independent of reaction time-based metrics, further understanding of age-dependent variations in normal visual tracking behavior is necessary.
Collapse
Affiliation(s)
- Jun Maruta
- Brain Trauma Foundation, New York, NY, United States.,Department of Neurosurgery, Stanford University, Stanford, CA, United States.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Jamshid Ghajar
- Brain Trauma Foundation, New York, NY, United States.,Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Regan PM, Bleiberg J, Onge PS, Temme L. Feasibility of using normobaric hypoxic stress in mTBI research. Concussion 2017; 2:CNC44. [PMID: 30202585 PMCID: PMC6094798 DOI: 10.2217/cnc-2017-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
Studies of mild traumatic brain injury (mTBI) recovery generally assess patients in unstressed conditions that permit compensation for impairments through increased effort expenditure. This possibility may explain why a subgroup of individuals report persistent mTBI symptoms yet perform normally on objective assessment. Accordingly, the development and utilization of stress paradigms may be effective for enhancing the sensitivity of mTBI assessment. Previous studies, discussed here, indirectly but plausibly support the use of normobaric hypoxia as a stressor in uncovering latent mTBI symptoms due to the overlapping symptomatology induced by both normobaric hypoxia and mTBI. Limited studies by our group and others further support this plausibility through proof-of-concept demonstrations that hypoxia reversibly induces disproportionately severe impairments of oculomotor, pupillometric, cognitive and autonomic function in mTBI individuals.
Collapse
Affiliation(s)
- Patrick M Regan
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
| | - Joseph Bleiberg
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Paul St Onge
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
| | - Leonard Temme
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
| |
Collapse
|
16
|
Adhikari S, Stark DE. Video-based eye tracking for neuropsychiatric assessment. Ann N Y Acad Sci 2017; 1387:145-152. [PMID: 28122120 DOI: 10.1111/nyas.13305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/21/2016] [Accepted: 11/11/2016] [Indexed: 12/01/2022]
Abstract
This paper presents a video-based eye-tracking method, ideally deployed via a mobile device or laptop-based webcam, as a tool for measuring brain function. Eye movements and pupillary motility are tightly regulated by brain circuits, are subtly perturbed by many disease states, and are measurable using video-based methods. Quantitative measurement of eye movement by readily available webcams may enable early detection and diagnosis, as well as remote/serial monitoring, of neurological and neuropsychiatric disorders. We successfully extracted computational and semantic features for 14 testing sessions, comprising 42 individual video blocks and approximately 17,000 image frames generated across several days of testing. Here, we demonstrate the feasibility of collecting video-based eye-tracking data from a standard webcam in order to assess psychomotor function. Furthermore, we were able to demonstrate through systematic analysis of this data set that eye-tracking features (in particular, radial and tangential variance on a circular visual-tracking paradigm) predict performance on well-validated psychomotor tests.
Collapse
Affiliation(s)
- Sam Adhikari
- School of Medicine, Stanford University, Stanford, California.,Department of Management Science and Information Systems, Rutgers University, Newark, New Jersey.,Division of Intelligent Systems, Sysoft Corporation, Whitehouse Station, New Jersey
| | - David E Stark
- Institute for Next Generation Healthcare, and Department of Health System Design and Global Health, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Sussman ES, Ho AL, Pendharkar AV, Ghajar J. Clinical evaluation of concussion: the evolving role of oculomotor assessments. Neurosurg Focus 2017; 40:E7. [PMID: 27032924 DOI: 10.3171/2016.1.focus15610] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sports-related concussion is a change in brain function following a direct or an indirect force to the head, identified in awake individuals and accounting for a considerable proportion of mild traumatic brain injury. Although the neurological signs and symptoms of concussion can be subtle and transient, there can be persistent sequelae, such as impaired attention and balance, that make affected patients particularly vulnerable to further injury. Currently, there is no accepted definition or diagnostic criteria for concussion, and there is no single assessment that is accepted as capable of identifying all patients with concussion. In this paper, the authors review the available screening tools for concussion, with particular emphasis on the role of visual function testing. In particular, they discuss the oculomotor assessment tools that are being investigated in the setting of concussion screening.
Collapse
Affiliation(s)
- Eric S Sussman
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Jamshid Ghajar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Fine MS, Lum PS, Brokaw EB, Caywood MS, Metzger AJ, Libin AV, Terner J, Tsao JW, Norris JN, Milzman D, Williams D, Colombe J, Dromerick AW. Dynamic motor tracking is sensitive to subacute mTBI. Exp Brain Res 2016; 234:3173-3184. [DOI: 10.1007/s00221-016-4714-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/27/2016] [Indexed: 11/28/2022]
|
19
|
Tong J, Maruta J, Heaton KJ, Maule AL, Rajashekar U, Spielman LA, Ghajar J. Degradation of Binocular Coordination during Sleep Deprivation. Front Neurol 2016; 7:90. [PMID: 27379009 PMCID: PMC4904152 DOI: 10.3389/fneur.2016.00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
To aid a clear and unified visual perception while tracking a moving target, both eyes must be coordinated, so the image of the target falls on approximately corresponding areas of the fovea of each eye. The movements of the two eyes are decoupled during sleep, suggesting a role of arousal in regulating binocular coordination. While the absence of visual input during sleep may also contribute to binocular decoupling, sleepiness is a state of reduced arousal that still allows for visual input, providing a context within which the role of arousal in binocular coordination can be studied. We examined the effects of sleep deprivation on binocular coordination using a test paradigm that we previously showed to be sensitive to sleep deprivation. We quantified binocular coordination with the SD of the distance between left and right gaze positions on the screen. We also quantified the stability of conjugate gaze on the target, i.e., gaze–target synchronization, with the SD of the distance between the binocular average gaze and the target. Sleep deprivation degraded the stability of both binocular coordination and gaze–target synchronization, but between these two forms of gaze control the horizontal and vertical components were affected differently, suggesting that disconjugate and conjugate eye movements are under different regulation of attentional arousal. The prominent association found between sleep deprivation and degradation of binocular coordination in the horizontal direction may be used for a fit-for-duty assessment.
Collapse
Affiliation(s)
| | - Jun Maruta
- Brain Trauma Foundation , New York, NY , USA
| | - Kristin J Heaton
- United States Army Research Institute of Environmental Medicine, Natick, MA, USA; Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Alexis L Maule
- United States Army Research Institute of Environmental Medicine, Natick, MA, USA; Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | | | - Jamshid Ghajar
- Brain Trauma Foundation, New York, NY, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Maruta J, Spielman LA, Yarusi BB, Wang Y, Silver JM, Ghajar J. Chronic Post-Concussion Neurocognitive Deficits. II. Relationship with Persistent Symptoms. Front Hum Neurosci 2016; 10:45. [PMID: 26912999 PMCID: PMC4753289 DOI: 10.3389/fnhum.2016.00045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/27/2016] [Indexed: 11/13/2022] Open
Abstract
Individuals who sustain a concussion may continue to experience problems long after their injury. However, it has been postulated in the literature that the relationship between a concussive injury and persistent complaints attributed to it is mediated largely by the development of symptoms associated with posttraumatic stress disorder (PTSD) and depression. We sought to characterize cognitive deficits of adult patients who had persistent symptoms after a concussion and determine whether the original injury retains associations with these deficits after accounting for the developed symptoms that overlap with PTSD and depression. We compared the results of neurocognitive testing from 33 patients of both genders aged 18-55 at 3 months to 5 years post-injury with those from 140 control subjects. Statistical comparisons revealed that patients generally produced accurate responses on reaction time-based tests, but with reduced efficiency. On visual tracking, patients increased gaze position error variability following an attention demanding task, an effect that may reflect greater fatigability. When neurocognitive performance was examined in the context of demographic- and symptom-related variables, the original injury retained associations with reduced performance at a statistically significant level. For some patients, reduced cognitive efficiency and fatigability may represent key elements of interference when interacting with the environment, leading to varied paths of recovery after a concussion. Poor recovery may be better understood when these deficits are taken into consideration.
Collapse
Affiliation(s)
- Jun Maruta
- Brain Trauma FoundationNew York, NY, USA
| | | | | | - Yushi Wang
- Brain Trauma FoundationNew York, NY, USA
| | - Jonathan M. Silver
- Department of Psychiatry, New York University School of MedicineNew York, NY, USA
| | - Jamshid Ghajar
- Brain Trauma FoundationNew York, NY, USA
- Department of Neurosurgery, Stanford UniversityStanford, CA, USA
| |
Collapse
|
21
|
Maruta J, Palacios EM, Zimmerman RD, Ghajar J, Mukherjee P. Chronic Post-Concussion Neurocognitive Deficits. I. Relationship with White Matter Integrity. Front Hum Neurosci 2016; 10:35. [PMID: 26903842 PMCID: PMC4748060 DOI: 10.3389/fnhum.2016.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
We previously identified visual tracking deficits and associated degradation of integrity in specific white matter tracts as characteristics of concussion. We re-explored these characteristics in adult patients with persistent post-concussive symptoms using independent new data acquired during 2009–2012. Thirty-two patients and 126 normal controls underwent cognitive assessments and MR-DTI. After data collection, a subset of control subjects was selected to be individually paired with patients based on gender and age. We identified patients’ cognitive deficits through pairwise comparisons between patients and matched control subjects. Within the remaining 94 normal subjects, we identified white matter tracts whose integrity correlated with metrics that indicated performance degradation in patients. We then tested for reduced integrity in these white matter tracts in patients relative to matched controls. Most patients showed no abnormality in MR images unlike the previous study. Patients’ visual tracking was generally normal. Patients’ response times in an attention task were slowed, but could not be explained as reduced integrity of white matter tracts relating to normal response timing. In the present patient cohort, we did not observe behavioral or anatomical deficits that we previously identified as characteristic of concussion. The recent cohort likely represented those with milder injury compared to the earlier cohort. The discrepancy may be explained by a change in the patient recruitment pool circa 2007 associated with an increase in public awareness of concussion.
Collapse
Affiliation(s)
- Jun Maruta
- Brain Trauma Foundation New York, NY USA
| | - Eva M Palacios
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco San Francisco, CA USA
| | | | - Jamshid Ghajar
- Brain Trauma FoundationNew York, NY USA; Department of Neurosurgery, Stanford UniversityStanford, CA USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco San Francisco, CA USA
| |
Collapse
|
22
|
Astafiev SV, Shulman GL, Metcalf NV, Rengachary J, MacDonald CL, Harrington DL, Maruta J, Shimony JS, Ghajar J, Diwakar M, Huang MX, Lee RR, Corbetta M. Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1254-71. [PMID: 25758167 DOI: 10.1089/neu.2014.3547] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI.
Collapse
Affiliation(s)
- Serguei V Astafiev
- 1 Department of Neurology, Washington University in St. Louis , St. Louis, Missouri
| | - Gordon L Shulman
- 1 Department of Neurology, Washington University in St. Louis , St. Louis, Missouri
| | - Nicholas V Metcalf
- 1 Department of Neurology, Washington University in St. Louis , St. Louis, Missouri
| | - Jennifer Rengachary
- 1 Department of Neurology, Washington University in St. Louis , St. Louis, Missouri
| | | | - Deborah L Harrington
- 2 Department of Radiology, University of California , San Diego, San Diego, California
| | - Jun Maruta
- 3 Brain Trauma Foundation , New York, New York
| | | | - Jamshid Ghajar
- 3 Brain Trauma Foundation , New York, New York.,4 Department of Neurological Surgery, Weill Cornell Medical College , New York, New York
| | - Mithun Diwakar
- 2 Department of Radiology, University of California , San Diego, San Diego, California
| | - Ming-Xiong Huang
- 2 Department of Radiology, University of California , San Diego, San Diego, California
| | - Roland R Lee
- 2 Department of Radiology, University of California , San Diego, San Diego, California
| | - Maurizio Corbetta
- 1 Department of Neurology, Washington University in St. Louis , St. Louis, Missouri
| |
Collapse
|
23
|
Kochanek PM, Jackson TC, Ferguson NM, Carlson SW, Simon DW, Brockman EC, Ji J, Bayir H, Poloyac SM, Wagner AK, Kline AE, Empey PE, Clark RS, Jackson EK, Dixon CE. Emerging therapies in traumatic brain injury. Semin Neurol 2015; 35:83-100. [PMID: 25714870 PMCID: PMC4356170 DOI: 10.1055/s-0035-1544237] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discussTBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nikki Miller Ferguson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erik C. Brockman
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Ji
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hülya Bayir
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philip E. Empey
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Adaptation of visual tracking synchronization after one night of sleep deprivation. Exp Brain Res 2013; 232:121-31. [DOI: 10.1007/s00221-013-3725-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
|
25
|
de Haas GJF. Synchronicity in the performing arts: Oscar Wilde’s nightmare? Clin Rheumatol 2013; 32:493-5. [DOI: 10.1007/s10067-013-2200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 01/25/2013] [Indexed: 11/25/2022]
|