1
|
Roberts JW, Maiden J, Bennett SJ. Impact of simulated target blur on the preparation and execution of aiming movements. VISUAL COGNITION 2022. [DOI: 10.1080/13506285.2022.2140730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James W. Roberts
- Liverpool Hope University, Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health Sciences, Liverpool, UK
| | - James Maiden
- Liverpool Hope University, Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health Sciences, Liverpool, UK
| | - Simon J. Bennett
- Liverpool John Moores University, Research Institute of Sport & Exercise Sciences, Brain & Behaviour Research Group, Liverpool, UK
| |
Collapse
|
2
|
Loria T, de Grosbois J, Haire C, Vuong V, Schaffert N, Tremblay L, Thaut MH. Music-based intervention drives paretic limb acceleration into intentional movement frequencies in chronic stroke rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:989810. [PMID: 36262914 PMCID: PMC9574387 DOI: 10.3389/fresc.2022.989810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
This study presented a novel kinematic assessment of paretic limb function "online" during the actual therapeutic exercisers rooted within the acceleration domain. Twenty-eight patients at chronic stroke stages participated in an auditory-motor intervention mapping reaching movements of the paretic arm unto surfaces of large digital musical instruments and sound tablets that provided rhythmic entrainment cues and augmented auditory feedback. Patients also wore a tri-axial accelerometer on the paretic limb during the nine-session intervention. The resulting acceleration profiles were extracted and quantified within the frequency domain. Measures of peak power and peak width were leveraged to estimate volitional control and temporal consistency of paretic limb movements, respectively. Clinical assessments included the Wolf Motor Function Test and Fugl-Meyer - Upper Extremity subtest. The results showed that peak power increased significantly from Session 1 to Session 9 within oscillatory frequency ranges associated with intentional movement execution (i.e., 4.5 Hz). Decreases in peak width over time provided additional evidence for improved paretic arm control from a temporal perspective. In addition, Peak width values obtained in Session 1 was significantly correlated with pre-test Fugl-Meyer - Upper Extremity scores. These results highlighted improvements in paretic limb acceleration as an underlying mechanism in stroke motor recovery and shed further light on the utility of accelerometry-based measures of paretic limb control in stroke rehabilitation. The data reported here was obtained from a larger clinical trial: https://clinicaltrials.gov/ct2/show/NCT03246217 ClinicalTrials.gov Identifier: NCT03246217.
Collapse
Affiliation(s)
- Tristan Loria
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada,Correspondence: Tristan Loria
| | - John de Grosbois
- BaycrestHealth Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Catherine Haire
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Veronica Vuong
- BaycrestHealth Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Nina Schaffert
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany,BeSB GmbH Berlin Sound Engineering, Berlin, Germany
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael H. Thaut
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
What is the nature of motor adaptation to dynamic perturbations? PLoS Comput Biol 2022; 18:e1010470. [PMID: 36040962 PMCID: PMC9467354 DOI: 10.1371/journal.pcbi.1010470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
When human participants repeatedly encounter a velocity-dependent force field that distorts their movement trajectories, they adapt their motor behavior to recover straight trajectories. Computational models suggest that adaptation to a force field occurs at the action selection level through changes in the mapping between goals and actions. The quantitative prediction from these models indicates that early perturbed trajectories before adaptation and late unperturbed trajectories after adaptation should have opposite curvature, i.e. one being a mirror image of the other. We tested these predictions in a human adaptation experiment and we found that the expected mirror organization was either absent or much weaker than predicted by the models. These results are incompatible with adaptation occurring at the action selection level but compatible with adaptation occurring at the goal selection level, as if adaptation corresponds to aiming toward spatially remapped targets. Motor adaptation is a fundamental component of the acquisition and maintenance of skilled behaviors. Yet the nature of motor adaptation remains poorly understood: when we encounter forces which repeatedly perturb our movements, do we change our actions or our plans? Current computational models of motor control favor the former, but this assumption has not been thoroughly investigated. To address this issue, we compared predictions of a model of motor adaptation based on changes at the action level with observations obtained from a group of human participants involved in a motor adaptation task. The behavior of the participants clearly differed from the model’s predictions. These results challenge contemporary perspectives on motor adaptation.
Collapse
|
4
|
Goldlist S, Wijeyaratnam DO, Edwards T, Pilutti LA, Cressman EK. Assessing proprioceptive acuity in people with multiple sclerosis. Mult Scler J Exp Transl Clin 2022; 8:20552173221111761. [PMID: 35837242 PMCID: PMC9274812 DOI: 10.1177/20552173221111761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Proprioceptive acuity and impairments in proprioceptively guided reaches have not been comprehensively examined in people with multiple sclerosis (MS). Objective To examine proprioceptive acuity in people with MS who self-report and who do not self-report upper limb (UL) impairment, and to determine how people with MS reach proprioceptive targets. Methods Twenty-four participants with MS were recruited into two groups based on self-reported UL impairment: MS-R (i.e. report UL impairment; n = 12) vs. MS-NR (i.e. do not report UL impairment; n = 12). Proprioception was assessed using ipsilateral and contralateral robotic proprioceptive matching tasks. Results Participants in the MS-R group demonstrated worse proprioceptive acuity compared to the MS-NR group on the ipsilateral and contralateral robotic matching tasks. Analyses of reaches to proprioceptive targets further revealed that participants in the MS-R group exhibited deficits in movement planning, as demonstrated by greater errors at peak velocity in the contralateral matching task in comparison to the MS-NR group. Conclusion Our findings suggest that people with MS who self-report UL impairment demonstrate worse proprioceptive acuity, as well as poorer movement planning in comparison to people with MS who do not report UL impairment.
Collapse
Affiliation(s)
| | | | - Thomas Edwards
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara A Pilutti
- Interdisciplinary School of Health Science, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K Cressman
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Loria T, Tan M, de Grosbois J, Huang A, Thaut MH. Temporospatial Alterations in Upper-Limb and Mallet Control Underlie Motor Learning in Marimba Performance. Front Psychol 2022; 13:834869. [PMID: 35222211 PMCID: PMC8866314 DOI: 10.3389/fpsyg.2022.834869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Sound-producing movements in percussion performance require a high degree of fine motor control. However, there remains a relatively limited empirical understanding of how performance level abilities develop in percussion performance in general, and marimba performance specifically. To address this issue, nine percussionists performed individualised excerpts on marimba within three testing sessions spaced 29 days apart to assess early, intermediate, and late stages of motor learning. Motor learning was quantified via analyses of both the temporal control of mallet movements, and the spatial variability of upper-limb movements. The results showed that temporal control of mallet movements was greater in the intermediate compared to the early learning session, with no significant additional improvements revealed in the late learning session. In addition, spatial variability in the left and right elbows decreased within the intermediate compared to the early learning session. The results suggest that temporal control of mallet movements may be driven by reductions in spatial variability of elbow movements specifically. As a result, this study provides novel evidence for kinematic mechanisms underlying motor learning in percussion which can be applied towards enhancing musical training.
Collapse
Affiliation(s)
- Tristan Loria
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Melissa Tan
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - John de Grosbois
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Aiyun Huang
- Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Michael H Thaut
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Hwang IS, Hu CL, Huang WM, Tsai YY, Chen YC. Potential Motor Benefits of Visual Feedback of Error Reduction for Older Adults. J Aging Phys Act 2020; 28:934-942. [PMID: 32702665 DOI: 10.1123/japa.2019-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 11/18/2022]
Abstract
This study investigated how visual feedback of virtual error reduction (ER) modified the visuomotor performance of older adults with limited attentional capacity. Error structures of young and older adults during birhythmic force tracking were contrasted when the visualized error size was exact or half of the actual size. As compared with full-size error feedback, ER feedback improved the force tracking symmetry of older adults, but undermined that of young adults. Extended Poincaré analysis revealed that young adults presented greater short-term error variability (mean value of κ-lagged SD1 of the error signal) with ER feedback, which led to a smaller mean value of κ-lagged SD1 of the error signal for older adults. The ER-related task improvement of the older adults was negatively correlated with the size of the tracking errors with real error feedback and positively correlated with ER-related increases in force spectral symmetry and decreases in the mean value of κ-lagged SD1 of the error signal. ER feedback could advance visuomotor tasks for older adults who perform worse with full-size visual feedback by the enhancement of self-efficacy and stabilization of negative internal feedback.
Collapse
|
7
|
Wijeyaratnam DO, Chua R, Cressman EK. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment. Exp Brain Res 2019; 237:1431-1444. [PMID: 30895342 DOI: 10.1007/s00221-019-05515-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/09/2019] [Indexed: 12/24/2022]
Abstract
Human movements are remarkably adaptive. We are capable of completing movements in a novel visuomotor environment with similar accuracy to those performed in a typical environment. In the current study, we examined if the control processes underlying movements under typical conditions were different from those underlying novel visuomotor conditions. 16 participants were divided into two groups, one receiving continuous visual feedback during all reaches (CF), and the other receiving terminal feedback regarding movement endpoint (TF). Participants trained in a virtual environment by completing 150 reaches to three targets when (1) a cursor accurately represented their hand motion (i.e., typical environment) and (2) a cursor was rotated 45° clockwise relative to their hand motion (i.e., novel environment). Analyses of within-trial measures across 150 reaching trials revealed that participants were able to demonstrate similar movement outcomes (i.e., movement time and angular errors) regardless of visual feedback or reaching environment by the end of reach training. Furthermore, a reduction in variability across several measures (i.e., reaction time, movement time, time after peak velocity, and jerk score) over time showed that participants improved the consistency of their movements in both reaching environments. However, participants took more time and were less consistent in the timing of initiating their movements when reaching in a novel environment compared to reaching in a typical environment, even at the end of training. As well, angular error variability at different proportions of the movement trajectory was consistently greater when reaching in a novel environment across trials and within a trial. Together, the results suggest a greater contribution of offline control processes and less effective online corrective processes when reaching in a novel environment compared to when reaching in a typical environment.
Collapse
Affiliation(s)
- Darrin O Wijeyaratnam
- School of Human Kinetics, University of Ottawa, 125 University Private, Room 360, Ottawa, ON, K1N 6N5, Canada
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, 6108 Thunderbird Boulevard, Osborne Centre Unit 2, Room 205, Vancouver, BC, V6T 1Z1, Canada
| | - Erin K Cressman
- School of Human Kinetics, University of Ottawa, 125 University Private, Room 360, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
8
|
Trajectory analysis of discrete goal-directed pointing movements: How many trials are needed for reliable data? Behav Res Methods 2019; 50:2162-2172. [PMID: 29218584 DOI: 10.3758/s13428-017-0983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A powerful tool in motor behavior research is trajectory analysis of discrete goal-directed pointing movements. The purpose of the present analysis was to estimate the minimum number of trials per participant required to achieve the conventional level of reliability for trajectory analysis. We analyzed basic measurements of movement and three common methods of trajectory analysis within the framework of generalizability theory. Generalizability studies were used to decompose the total variance of these variables into the percent contributions from person, trial, and the person-by-trial interaction. Decision studies were then used to determine the minimum number of trials required to achieve the conventional level of reliability. The number of trials per participant needed for reliable data of discrete goal-directed pointing movements depended on the dependent variable-for example, reaction times required six or ten trials, movement times required three trials, and constant error required 47 trials. For trajectory analysis, ten or fewer trials were required for reliable dependent variables during the first half of the movement (up to peak velocity or 70% of the displacement). The number of trials required for the second half of the movement rapidly increased to 47 trials at movement termination. This increase in the number of trials required for reliable analysis of the second half of the movement was indicative of online control. Finally, correlation analysis was performed with simulated correlations on subsets of trials, and all 32 trials were required. However, 18 trials might be used without a practically significant change in the correlations.
Collapse
|
9
|
Which Measures of Online Control Are Least Sensitive to Offline Processes? Motor Control 2018; 22:358-376. [PMID: 29486667 DOI: 10.1123/mc.2017-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A major challenge to the measurement of online control is the contamination by offline, planning-based processes. The current study examined the sensitivity of four measures of online control to offline changes in reaching performance induced by prism adaptation and terminal feedback. These measures included the squared Z scores (Z2) of correlations of limb position at 75% movement time versus movement end, variable error, time after peak velocity, and a frequency-domain analysis (pPower). The results indicated that variable error and time after peak velocity were sensitive to the prism adaptation. Furthermore, only the Z2 values were biased by the terminal feedback. Ultimately, the current study has demonstrated the sensitivity of limb kinematic measures to offline control processes and that pPower analyses may yield the most suitable measure of online control.
Collapse
|
10
|
de Grosbois J, Tremblay L. Distinct and flexible rates of online control. PSYCHOLOGICAL RESEARCH 2017; 82:1054-1072. [PMID: 28733770 DOI: 10.1007/s00426-017-0888-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
Abstract
Elliott et al. (Hum Mov Sci 10:393-418, 1991) proposed a pseudocontinuous model of online control whereby overlapping corrections lead to the appearance of smooth kinematic profiles in the presence of online feedback. More recently, it was also proposed that online control is not a singular process [see Elliott et al. (Psychol Bull 136(6):1023-1044, 2010)]. However, support for contemporary models of online control were based on methodologies that were not designed to be sensitive to different online control sub-processes. The current study sought to evaluate the possibility of multiple distinct (i.e., visual and non-visual) mechanisms contributing to the control of reaching movements completed in either a full-vision, a no-vision, or a no-vision memory-guided condition. Frequency domain analysis was applied to the acceleration traces of reaching movements. In an attempt to elicit a modulation in the online control mechanisms, these movements were completed at two levels of spatio-temporal constraint, namely with 10 and 30 cm target distances. One finding was that performance in the full-vision relative to both no-vision conditions could be distinguished via two distinct frequency peaks. Increases in the peak magnitude at the lower frequencies were associated with visuomotor mechanisms and increases in the peak magnitude at the higher frequencies were associated with non-visual mechanisms. In addition, performance to the 30-cm target led to a lower peak at a lower frequency relative to the 10 cm target, indicating that the iterative rates of visuomotor control mechanisms are flexible and sensitive to the spatio-temporal constraints of the associated movement.
Collapse
Affiliation(s)
- John de Grosbois
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada.,Centre for Motor Control, University of Toronto, Toronto, ON, Canada.,Perceptual-Motor Behaviour Laboratory, University of Toronto, Toronto, ON, Canada
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada. .,Centre for Motor Control, University of Toronto, Toronto, ON, Canada. .,Perceptual-Motor Behaviour Laboratory, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|