1
|
Liu T, Gu J, Li C, Guo M, Yuan L, Lv Q, Qin C, Du M, Chu H, Liu H, Zhang Z. Alternative polyadenylation-related genetic variants contribute to bladder cancer risk. J Biomed Res 2023; 37:405-417. [PMID: 37936490 PMCID: PMC10687529 DOI: 10.7555/jbr.37.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 11/09/2023] Open
Abstract
Aberrant alternative polyadenylation (APA) events play an important role in cancers, but little is known about whether APA-related genetic variants contribute to the susceptibility to bladder cancer. Previous genome-wide association study performed APA quantitative trait loci (apaQTL) analyses in bladder cancer, and identified 17 955 single nucleotide polymorphisms (SNPs). We found that gene symbols of APA affected by apaQTL-associated SNPs were closely correlated with cancer signaling pathways, high mutational burden, and immune infiltration. Association analysis showed that apaQTL-associated SNPs rs34402449 C>A, rs2683524 C>T, and rs11540872 C>G were significantly associated with susceptibility to bladder cancer (rs34402449: OR = 1.355, 95% confidence interval [CI]: 1.159-1.583, P = 1.33 × 10 -4; rs2683524: OR = 1.378, 95% CI: 1.164-1.632, P = 2.03 × 10 -4; rs11540872: OR = 1.472, 95% CI: 1.193-1.815, P = 3.06 × 10 -4). Cumulative effect analysis showed that the number of risk genotypes and smoking status were significantly associated with an increased risk of bladder cancer ( P trend = 2.87 × 10 -12). We found that PRR13, being demonstrated the most significant effect on cell proliferation in bladder cancer cell lines, was more highly expressed in bladder cancer tissues than in adjacent normal tissues. Moreover, the rs2683524 T allele was correlated with shorter 3' untranslated regions of PRR13 and increased PRR13 expression levels. Collectively, our findings have provided informative apaQTL resources and insights into the regulatory mechanisms linking apaQTL-associated variants to bladder cancer risk.
Collapse
Affiliation(s)
- Ting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingjing Gu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chuning Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mengfan Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Qiang Lv
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chao Qin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
2
|
Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, Xiang J, He N, Hu Z, Wang F. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer 2023; 22:151. [PMID: 37684641 PMCID: PMC10486081 DOI: 10.1186/s12943-023-01856-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the fourth most common malignant tumor with a poor prognosis worldwide. Further exploration and research are needed to unmask the underlying roles and molecular mechanisms of circular RNAs. In the current study, our findings showed that circXRN2 suppresses tumor progression driven by histone lactylation by activating the Hippo pathway in human bladder cancer. METHODS RNA immunoprecipitation (RIP) followed by circRNA sequencing confirmed circXRN2 as the research object. Overexpression of circXRN2 and knockdown of TAZ/YAP further verified the biological functions in T24 and TCCSUP cells. RIP, immunoprecipitation and coimmunoprecipitation were used to elucidate the interaction between circXRN2 and LATS1. A Seahorse metabolic analyzer was used to determine the glycolytic rate. Cleavage under targets and Tagmentation (CUT&Tag) and chromatin immunoprecipitation (ChIP) were employed to ensure the regulatory roles of H3K18 lactylation in the transcriptional activity of LCN2. RESULTS CircXRN2 is aberrantly downregulated in bladder cancer tissues and cell lines. CircXRN2 inhibits the proliferation and migration of tumor cells both in vitro and in vivo. In addition, circXRN2 serves as a negative regulator of glycolysis and lactate production. Mechanistically, circXRN2 prevents LATS1 from SPOP-mediated degradation by binding to the SPOP degron and then activates the Hippo signaling pathway to exert various biological functions. The circXRN2-Hippo pathway regulatory axis further modulates tumor progression by inhibiting H3K18 lactylation and LCN2 expression in human bladder cancer. CONCLUSIONS CircXRN2 suppresses tumor progression driven by H3K18 lactylation by activating the Hippo signaling pathway in human bladder cancer. Our results indicated novel therapeutic targets and provided promising strategies for clinical intervention in human bladder cancer.
Collapse
Affiliation(s)
- Bo Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Juntao Lin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Xianwu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Mengjing Fan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, R.P. China
| | - Jiayong Xiang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, R.P. China.
| |
Collapse
|
3
|
An integrative approach for identification of smoking-related genes involving bladder cancer. Arch Toxicol 2023; 97:177-188. [PMID: 36220961 DOI: 10.1007/s00204-022-03380-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Tobacco smoking is one of the most important environmental risk factors involving bladder tumorigenesis. However, smoking-related genes in bladder carcinogenesis and corresponding genetic effects on bladder cancer risk remain unclear. Weighted correlation network analysis (WGCNA) underlying transcriptome of bladder cancer tissues was applied to identify smoking-related genes. The logistic regression model was utilized to estimate genetic effects of single nucleotide polymorphisms (SNPs) in smoking-related genes on bladder cancer risk in the Chinese and European populations with a total of 6510 cases and 6569 controls, as well as the interaction with smoking status. Transcriptome of cells and tissues was used to profile the expression pattern of candidate genes and their genetic variants. Our results demonstrated that a total of 24 SNPs in 14 smoking-related genes were associated with the risk of bladder cancer, of which rs9348451 in CDKAL1 exhibited an interaction with smoking status (ORinteraction = 1.38, Pinteraction = 1.08 × 10-2) and tobacco smoking might combine with CDKAL1 rs9348451 to increase the risk of bladder cancer (Ptrend = 4.27 × 10-4). Moreover, rs9348451 was associated with CDKAL1 expression in bladder cancer, especially in smokers (P < 0.001). Besides, CDKAL1 was upregulated in bladder cancer compared to normal adjacent tissues, as well as upregulated via treatment of cigarette smoke extracts. This study highlights the important role of nurture and nature, as well as their interaction on tumorigenesis, which provides a new way to decipher the etiology of bladder cancer with smoking status.
Collapse
|
4
|
Xiang Z, Ye Z, Ma J, Lin Y, Zhou Y. Temporal Trends and Projections of Bladder Cancer Burden in China from 1990 to 2030: Findings from the Global Burden of Disease Study. Clin Epidemiol 2022; 14:1305-1315. [PMID: 36387929 PMCID: PMC9648909 DOI: 10.2147/clep.s387289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/23/2022] [Indexed: 12/20/2023] Open
Abstract
PURPOSE Identifying disease burden and risk factors of bladder cancer and projecting its epidemiological trend in China, which can provide reference data to formulate measures for its management and prevention. METHODS We analyzed the incidence, mortality, and disability-adjusted life-years (DALYs) data of bladder cancer in China from 1990 to 2019 and predicted to 2030 based on the Global Burden of Disease Study 2019. We also estimated the proportion of risk factors contributing to bladder cancer DALYs. The average annual percentage change (AAPC) in both sexes was calculated to quantify the temporal trends. RESULTS In China, the age-standardized incidence rate of bladder cancer increased from 3.3/100,000 in 1990 to 5.16/100,000 in 2019 (AAPC of 1.47), while the age-standardized mortality rate and age-standardized DALYs rate declined slightly (AAPC of -0.58 and -0.65, respectively). The burden of bladder cancer increased with age, which reached a peak over 85 years old. The main risk factor for bladder cancer was smoking, and the contribution of high fasting plasma glucose increased from 1990 to 2019, with an AAPC of 0.85 in males and 0.61 in females. We predicted total incident cases, deaths and DALYs will increase to 150,372 and 53,520 and 1043,688 in 2030, respectively. The disease burden of bladder cancer in males will consistently higher than that in females from 2020 to 2030. CONCLUSION Although mortality and DALYs rates showed downward trends, the disease burden remained heavy in China at present. More effective and long-term health policies are needed to develop for early prevention and treatment of bladder cancer.
Collapse
Affiliation(s)
- Zhisheng Xiang
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Zijie Ye
- Department of Gastroenterology, The First Hospital of Fuzhou City Affiliated Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jingyu Ma
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Yongtian Lin
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Yan Zhou
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|
5
|
Sun JX, Liu CQ, Xu JZ, An Y, Xu MY, Zhong XY, Zeng N, Ma SY, He HD, Zhang ZB, Wang SG, Xia QD. A Four-Cell-Senescence-Regulator-Gene Prognostic Index Verified by Genome-Wide CRISPR Can Depict the Tumor Microenvironment and Guide Clinical Treatment of Bladder Cancer. Front Immunol 2022; 13:908068. [PMID: 35898492 PMCID: PMC9312376 DOI: 10.3389/fimmu.2022.908068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Bladder cancer (BCa) is the 10th most commonly diagnosed cancer worldwide, and cellular senescence is defined as a state of permanent cell cycle arrest and considered to play important roles in the development and progression of tumor. However, the comprehensive effect of senescence in BCa has not ever been systematically evaluated. Using the genome-wide CRISPR screening data acquired from DepMap (Cancer Dependency Map), senescence genes from the CellAge database, and gene expression data from The Cancer Genome Atlas (TCGA), we screened out 12 senescence genes which might play critical roles in BCa. A four-cell-senescence-regulator-gene prognostic index was constructed using the least absolute shrinkage and selection operator (LASSO) and multivariate COX regression model. The transcriptomic data and clinical information of BCa patients were downloaded from TCGA and Gene Expression Omnibus (GEO). We randomly divided the patients in TCGA cohort into training and testing cohorts and calculated the risk score according to the expression of the four senescence genes. The validity of this risk score was validated in the testing cohort (TCGA) and validation cohort (GSE13507). The Kaplan–Meier curves revealed a significant difference in the survival outcome between the high- and low-risk score groups. A nomogram including the risk score and other clinical factors (age, gender, stage, and grade) was established with better predictive capacity of OS in 1, 3, and 5 years. Besides, we found that patients in the high-risk group had higher tumor mutation burden (TMB); lower immune, stroma, and ESTIMATE scores; higher tumor purity; aberrant immune functions; and lower expression of immune checkpoints. We also performed gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) to investigate the interaction between risk score and hallmark pathways and found that a high risk score was connected with activation of senescence-related pathways. Furthermore, we found that a high risk score was related to better response to immunotherapy and chemotherapy. In conclusion, we identified a four-cell-senescence-regulator-gene prognostic index in BCa and investigated its relationship with TMB, the immune landscape of tumor microenvironment (TME), and response to immunotherapy and chemotherapy, and we also established a nomogram to predict the prognosis of patients with BCa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zong-Biao Zhang
- *Correspondence: Zong-Biao Zhang, ; Shao-Gang Wang, ; Qi-Dong Xia,
| | - Shao-Gang Wang
- *Correspondence: Zong-Biao Zhang, ; Shao-Gang Wang, ; Qi-Dong Xia,
| | - Qi-Dong Xia
- *Correspondence: Zong-Biao Zhang, ; Shao-Gang Wang, ; Qi-Dong Xia,
| |
Collapse
|
6
|
Cai M, Ni WJ, Wang YH, Wang JJ, Zhou H. Targeting TMEM88 as an Attractive Therapeutic Strategy in Malignant Tumors. Front Oncol 2022; 12:906372. [PMID: 35734592 PMCID: PMC9207468 DOI: 10.3389/fonc.2022.906372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
According to authoritative surveys, the overall morbidity and mortality of malignant tumors show an upward trend, and it is predicted that this trend will not be well contained in the upcoming new period. Since the influencing factors, pathogenesis, and progression characteristics of malignant tumors have not been fully elucidated, the existing treatment strategies, mainly including surgical resection, ablation therapy and chemotherapy, cannot achieve satisfactory results. Therefore, exploring potential therapeutic targets and clarifying their functions and mechanisms in continuous research and practice will provide new ideas and possibilities for the treatment of malignant tumors. Recently, a double-transmembrane protein named transmembrane protein 88 (TMEM88) was reported to regulate changes in downstream effectors by mediating different signaling pathways and was confirmed to be widely involved in cell proliferation, differentiation, apoptosis and tumor progression. At present, abnormal changes in TMEM88 have been found in breast cancer, ovarian cancer, lung cancer, thyroid cancer and other malignant tumors, which has also attracted the attention of tumor research and attempted to clarify its function and mechanism. However, due to the lack of systematic generalization, comprehensive and detailed research results have not been comprehensively summarized. In view of this, this article will describe in detail the changes in TMEM88 in the occurrence and development of malignant tumors, comprehensively summarize the corresponding molecular mechanisms, and explore the potential of targeting TMEM88 in the treatment of malignant tumors to provide valuable candidate targets and promising intervention strategies for the diagnosis and cure of malignant tumors.
Collapse
Affiliation(s)
- Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying-Hong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing-Ji Wang
- Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
The DeltaN p63 Promotes EMT and Metastasis in Bladder Cancer by the PTEN/AKT Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9566055. [PMID: 35463095 PMCID: PMC9019423 DOI: 10.1155/2022/9566055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Bladder cancer is a common tumour of the urinary system, and more than 90% is urothelial carcinoma. Therefore, it is important for discovering the key target genes and molecules of bladder tumour cell metastasis and invasion. Our research initially explored the regulation of deltaN p63 on the progression and metastasis of bladder cancer and found that deltaN p63 can influence the occurrence of EMT through PTEN and ultimately regulate the growth and metastasis of bladder cancer. In summary, this study identified a new EMT regulator, deltaN p63, further revealed the mechanism of the invasion and metastasis of bladder cancer cells, and provided a theoretical basis for finding new target molecules and drugs to treat bladder cancer. In conclusion, this study will further reveal the mechanism of tumour cell invasion and metastasis and provide a theoretical basis for cancer treatment to find new target molecules and drugs.
Collapse
|
8
|
Du H, Tao T, Xu S, Xu C, Li S, Su Q, Yan J, Liu B, Li R. 4-Methoxydalbergione Inhibits Bladder Cancer Cell Growth via Inducing Autophagy and Inhibiting Akt/ERK Signaling Pathway. Front Mol Biosci 2022; 8:789658. [PMID: 35252345 PMCID: PMC8888913 DOI: 10.3389/fmolb.2021.789658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer (BC) ranks the fourth in incidence in cancers of men and is a common malignant tumor in women. 4-Methoxydalbergione (4MOD), which is purified from Dalbergia sissoo Roxb, has been shown to have anticancer capacity for osteosarcoma and astroglioma. The role of 4MOD in bladder cancer has not been investigated. This study aims to evaluate the anticancer effect of 4MOD in BC cells and its possible mechanisms. The two human bladder cancer cell lines J82 and UMUC3 were used to evaluate the proliferation inhibitory effect of 4MOD by CCK8 and clonogenic assays. The migratory and invasive ability of tumor cells was examined by scratch test and transwell assay. Apoptosis was detected by flow cytometry and TUNEL assays. The autophagy-related molecules including Beclin-1 and LC3 were examined by Western blotting analysis. Furthermore, the RT-PCR was used to detect the mRNA expression of LC3. 4MOD repressed cell proliferation, migration, invasion and induced cell apoptosis in a concentration-dependent manner. The IC50 values of J82 and UMUC3 were 8.17 and 14.50 μM respectively. The mRNA and protein expression ratio of light chain 3-II (LC3-II)/LC3-I and the protein expression of Beclin-1 were increased when the BC cells were treated with 4MOD. The treatment of 4MOD attenuated the phosphorylation of Akt and ERK in the BC cells. We revealed that the 4MOD inhibits BC cells growth by inducing autophagy and inhibiting Akt/ERK signaling pathway. Our study provides new insights into the mechanism by which 4MOD weakens the proliferation of BC cells. This study demonstrates that 4MOD provided a lead compound for the development of novel compound with potent anticancer effect on BC cells.
Collapse
Affiliation(s)
- Haifang Du
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Ting Tao
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
| | - Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Changqiong Xu
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
| | - Shan Li
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
| | - Qiongli Su
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, China
| | - Jing Yan
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
- *Correspondence: Bo Liu, ; Ran Li,
| | - Ran Li
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
- *Correspondence: Bo Liu, ; Ran Li,
| |
Collapse
|
9
|
Wang DQ, Shuai J, Zheng H, Guo ZQ, Huang Q, Xu XF, Li XD, Zi H, Ming DJ, Ren XY, Zeng XT. Can Routine Blood and Urine Parameters Reveal Clues to Detect Bladder Cancer? A Case–Control Study. Front Oncol 2022; 11:796975. [PMID: 35127507 PMCID: PMC8813745 DOI: 10.3389/fonc.2021.796975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Limited attention has been paid to abnormal blood and urine test results for patients with bladder cancer. The present study aimed to identify whether blood and urine parameters are associated with bladder cancer. Methods We used a case–control design and matched each patient with bladder cancer with three healthy controls of the same age and sex. Univariate conditional logistic regression was used to calculate the crude and adjusted odds ratio (OR) and its 95% CI. Multivariate conditional logistic regression was performed for confounders adjustment, and Spearman’s correlation coefficient was used to assess the correlation between tumor T stages and urine parameters. Results Patients with bladder cancer (n = 360) and controls (n = 1050) were recruited. In the univariate conditional logistic analysis, higher urine pH was associated with a decreased risk of bladder cancer (OR = 0.67, 95% CI = 0.57–0.78), while higher values of urine protein (OR = 4.55, 95% CI = 3.36–6.15), urine glucose (OR = 1.56, 95% CI = 1.18–2.05), and urine occult blood (OR = 4.27, 95% CI = 3.44–5.29) were associated with an increased risk of bladder cancer. After adjustment for body mass index, fasting blood glucose, hypertension, red blood cells, white blood cells, lymphocytes, neutrophils, and platelets, significance still remained for urine pH (OR = 0.68, 95% CI = 0.53–0.88), urine protein (OR = 1.97, 95% CI = 1.21–3.19), urine glucose (OR = 2.61, 95% CI = 1.39–4.89), and urine occult blood (OR = 3.54, 95% CI = 2.73–4.58). Conclusion This study indicated that lower urine pH and higher values of urine protein, urine glucose, and urine occult blood might be risk factors for bladder cancer.
Collapse
Affiliation(s)
- Dan-Qi Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juan Shuai
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhong-Qiang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Feng Xu
- Department of Urology, Xianyang Central Hospital, Xianyang, China
| | - Xiao-Dong Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Hao Zi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Dao-Jing Ming
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
- Institutes of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Xuan-Yi Ren
- Department of Urology, Kaifeng Central Hospital, Kaifeng, China
- *Correspondence: Xian-Tao Zeng, , ; Xuan-Yi Ren,
| | - Xian-Tao Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xian-Tao Zeng, , ; Xuan-Yi Ren,
| |
Collapse
|