1
|
Mohan A, Agarwal S, Clauss M, Britt NS, Dhillon NK. Extracellular vesicles: novel communicators in lung diseases. Respir Res 2020; 21:175. [PMID: 32641036 PMCID: PMC7341477 DOI: 10.1186/s12931-020-01423-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and proteins, these intercellular communicators provide important insight into the health and disease condition of donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD, pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.
Collapse
Affiliation(s)
- Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Matthias Clauss
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
2
|
Nessaibia I, Fouache A, Lobaccaro JMA, Tahraoui A, Trousson A, Souidi M. Stress as an immunomodulator: liver X receptors maybe the answer. Inflammopharmacology 2018; 27:15-25. [PMID: 30467620 DOI: 10.1007/s10787-018-0546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Stress is a reflex response, both psychological and physiological, of the body to a difficult situation that requires adaptation. Stress is at the intersection of the objective event and the subjective event. The physiological mechanisms involved in chronic stress are numerous and can contribute to a wide variety of disorders, in all systems including the immune system. Stress modifies the Th1/Th2 balance via the HPA axis and a set of immune mediators. This will make the body more vulnerable to external infections in a scientific way while others claim the opposite, stress could be considered immune stimulatory. The development of synthetic LXR ligands such as T0901317 and GW3965 as well as an understanding of the direct involvement of these receptors in the regulation of proopiomelanocortin (POMC) gene expression and indirectly by producing a variety of cytokines in a stressor response, will open in the near future new therapeutic methods against the undesirable effects of stress on the behavior of the immune system.
Collapse
Affiliation(s)
- Issam Nessaibia
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France.
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria.
| | - Allan Fouache
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Abdelkrim Tahraoui
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria
| | - Amalia Trousson
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Maâmar Souidi
- Institut de radioprotection et de sûreté nucléaire, Direction de la radioprotection de l'homme, IRSN, Fontenay-aux-Roses Cedex, France
| |
Collapse
|