1
|
Jorayev P, Tashov I, Rozyyev V, Nguyen TS, Dogan NA, Yavuz CT. Covalent Amine Tethering on Ketone Modified Porous Organic Polymers for Enhanced CO 2 Capture. CHEMSUSCHEM 2020; 13:6433-6441. [PMID: 33058470 DOI: 10.1002/cssc.202002190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Effective removal of excess greenhouse gas CO2 necessitates new adsorbents that can overcome the shortcomings of the current capture methods. To achieve that, porous materials are often modified post-synthetically with reactive amine functionalities but suffer from significant surface area losses. Herein, we report a successful amine post-functionalization of a highly porous covalent organic polymer, COP-130, without losing much porosity. By varying the amine substituents, we recorded a remarkable increase in CO2 uptake and selectivity. Ketone functionality, a rarely accessible functional group for porous polymers, was inserted prior to amination and led to covalent tethering of amines. Interestingly, aminated polymers demonstrated relatively low heats of adsorption, which is useful for the rapid recyclability of materials, due to the formation of suspected intramolecular hydrogen bonding.
Collapse
Affiliation(s)
- Perman Jorayev
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Intizar Tashov
- Department of Chemical and Biomolecular Engineering KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Vepa Rozyyev
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Thien S Nguyen
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Nesibe A Dogan
- Department of Chemical and Biomolecular Engineering KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Cafer T Yavuz
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Chemical and Biomolecular Engineering KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Chemistry KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- KAIST Institute for the NanoCentury KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
2
|
Kim D, Subramanian S, Thirion D, Song Y, Jamal A, Otaibi MS, Yavuz CT. Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO2 fixation and cyclic carbonate formation. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Nguyen TS, Yavuz CT. Quantifying the nitrogen effect on CO 2 capture using isoporous network polymers. Chem Commun (Camb) 2020; 56:4273-4275. [PMID: 32215424 DOI: 10.1039/d0cc00982b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of nitrogen atoms on CO2 binding was evaluated for two isostructural porous bisimidazole-linked polymers (BILPs), which serendipitously had identical surface areas and pore size distributions, a very rare observation. The two structures differ only in the core of the trialdehyde component, the nitrogen atom (BILP-19) versus benzene ring (BILP-5). Such a slight difference, however, has brought about a stronger CO2 capture capacity of BILP-19 and hence increased CO2/N2 separation capability.
Collapse
Affiliation(s)
- Thien S Nguyen
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | |
Collapse
|