1
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
2
|
Shahmirzaee M, Nagai A. An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307828. [PMID: 38368249 DOI: 10.1002/smll.202307828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Indexed: 02/19/2024]
Abstract
In recent years, there has been considerable focus on the development of charge transfer (CT) complex formation as a means to modify the band gaps of organic materials. In particular, CT complexes alternate layers of aromatic molecules with donor (D) and acceptor (A) properties to provide inherent electrical conductivity. In particular, the synthetic porous frameworks as attractive D-A components have been extensively studied in recent years in comparison to existing D-A materials. Therefore, in this work, the synthetic porous frameworks are classified into conjugated microporous polymers (CMPs), covalent organic frameworks (COFs), and metal-organic frameworks (MOFs) and compare high-quality materials for CT in semiconductors. This work updates the overview of the above porous frameworks for CT, starting with their early history regarding their semiconductor applications, and lists CT concepts and selected key developments in their CT complexes and CT composites. In addition, the network formation methods and their functionalization are discussed to provide access to a variety of potential applications. Furthermore, several theoretical investigations, efficiency improvement techniques, and a discussion of the electrical conductivity of the porous frameworks are also highlighted. Finally, a perspective of synthetic porous framework studies on CT performance is provided along with some comparisons.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- ENSEMBLE 3 - Centre of Excellence, Warsaw, 01-919, Poland
| |
Collapse
|
3
|
Lerma‐Berlanga B, Ganivet CR, Almora‐Barrios N, Vismara R, Navarro JAR, Tatay S, Padial NM, Martí‐Gastaldo C. Tetrazine Linkers as Plug-and-Play Tags for General Metal-Organic Framework Functionalization and C 60 Conjugation. Angew Chem Int Ed Engl 2022; 61:e202208139. [PMID: 35972797 PMCID: PMC9826395 DOI: 10.1002/anie.202208139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/11/2023]
Abstract
The value of covalent post-synthetic modification in expanding the chemistry and pore versatility of reticular solids is well documented. Here we use mesoporous crystals of the metal-organic framework (MOF) UiO-68-TZDC to demonstrate the value of tetrazine connectors for all-purpose inverse electron-demand Diels-Alder ligation chemistry. Our results suggest a positive effect of tetrazine reticulation over its reactivity for quantitative one-step functionalization with a broad scope of alkene or alkyne dienophiles into pyridazine and dihydropyridazine frameworks. This permits generating multiple pore environments with diverse chemical functionalities and the expected accessible porosities, that is also extended to the synthesis of crystalline fulleretic materials by covalent conjugation of fullerene molecules.
Collapse
Affiliation(s)
- Belén Lerma‐Berlanga
- Functional Inorganic Materials TeamInstituto de Ciencia Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán-246980PaternaSpain
| | - Carolina R. Ganivet
- Functional Inorganic Materials TeamInstituto de Ciencia Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán-246980PaternaSpain
| | - Neyvis Almora‐Barrios
- Functional Inorganic Materials TeamInstituto de Ciencia Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán-246980PaternaSpain
| | - Rebecca Vismara
- Departamento de Química InorgánicaUniversidad de GranadaAv. Fuentenueva S/N18071GranadaSpain
| | - Jorge A. R. Navarro
- Departamento de Química InorgánicaUniversidad de GranadaAv. Fuentenueva S/N18071GranadaSpain
| | - Sergio Tatay
- Functional Inorganic Materials TeamInstituto de Ciencia Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán-246980PaternaSpain
| | - Natalia M. Padial
- Functional Inorganic Materials TeamInstituto de Ciencia Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán-246980PaternaSpain
| | - Carlos Martí‐Gastaldo
- Functional Inorganic Materials TeamInstituto de Ciencia Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán-246980PaternaSpain
| |
Collapse
|
4
|
Tetrazine Linkers as Plug‐and‐Play Tags for General Framework Functionalization and C60 Conjugation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Vicent-Morales M, Esteve-Rochina M, Calbo J, Ortí E, Vitórica-Yrezábal IJ, Mínguez Espallargas G. Semiconductor Porous Hydrogen-Bonded Organic Frameworks Based on Tetrathiafulvalene Derivatives. J Am Chem Soc 2022; 144:9074-9082. [PMID: 35575688 PMCID: PMC9136926 DOI: 10.1021/jacs.2c01957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Herein, we report
on the use of tetrathiavulvalene-tetrabenzoic
acid, H4TTFTB, to engender semiconductivity in porous hydrogen-bonded
organic frameworks (HOFs). By tuning the synthetic conditions, three
different polymorphs have been obtained, denoted MUV-20a, MUV-20b, and MUV-21, all of them presenting
open structures (22, 15, and 27%, respectively) and suitable TTF stacking
for efficient orbital overlap. Whereas MUV-21 collapses
during the activation process, MUV-20a and MUV-20b offer high stability evacuation, with a CO2 sorption
capacity of 1.91 and 1.71 mmol g–1, respectively,
at 10 °C and 6 bar. Interestingly, both MUV-20a and MUV-20b present a zwitterionic character with a positively
charged TTF core and a negatively charged carboxylate group. First-principles
calculations predict the emergence of remarkable charge transport
by means of a through-space hopping mechanism fostered by an efficient
TTF π–π stacking and the spontaneous formation
of persistent charge carriers in the form of radical TTF•+ units. Transport measurements confirm the efficient charge transport
in zwitterionic MUV-20a and MUV-20b with
no need for postsynthetic treatment (e.g., electrochemical oxidation
or doping), demonstrating the semiconductor nature of these HOFs with
record experimental conductivities of 6.07 × 10–7 (MUV-20a) and 1.35 × 10–6 S
cm–1 (MUV-20b).
Collapse
Affiliation(s)
- María Vicent-Morales
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | - María Esteve-Rochina
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | | | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| |
Collapse
|
6
|
Zhang HW, Li HK, Han ZY, Yuan R, He H. Incorporating Fullerenes in Nanoscale Metal-Organic Matrixes: An Ultrasensitive Platform for Impedimetric Aptasensing of Tobramycin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7350-7357. [PMID: 35076206 DOI: 10.1021/acsami.1c23320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rational design and preparation of available fullerene@metal-organic matrix hybrid materials are of profound significance in electrochemical biosensing applications due to their unique photoelectric properties. In this work, C60@UiO-66-NH2 nanocomposites serve as greatly promising materials to modify electrodes and fix aptamers, resulting in a remarkable electrochemical aptasensor for impedimetric sensing of tobramycin (TOB). Nanoscale composites have preferable electroactivity and small particle size with more exposed functional sites, such as Zr(IV) and -NH2, to immobilize aptamers for enhanced detection performance. As we know, most of the electrochemical impedance aptasensors require a long time to complete the detection process, but this prepared biosensor shows the rapid quantitative identification of target TOB within 4 min. This work expands the synthesis of functional fullerene@metal-organic matrix hybrid materials in electrochemical biosensing applications.
Collapse
Affiliation(s)
- Han-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Hong-Kai Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhang-Ye Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Rongrong Yuan
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
7
|
Zhang B, Qian BB, Li CT, Li XW, Nie HX, Yu MH, Chang Z. Donor–acceptor systems in metal–organic frameworks: design, construction, and properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this highlight, the development of donor acceptor (D–A) MOF was briefly reviewed and summarized in the aspects of design, construction, and properties. Also, an outlook about the research and potential application of D–A MOF has been presented.
Collapse
Affiliation(s)
- Bo Zhang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Bin-Bin Qian
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Chang-Tai Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Xing-Wang Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
8
|
Somsri S, Kuwamura N, Kojima T, Yoshinari N, Rujiwatra A, Konno T. Inclusion of cyclodextrins in a metallosupramolecular framework via structural transformations. CrystEngComm 2022. [DOI: 10.1039/d1ce01416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inclusion of α-cyclodextrin and both α- and γ-cyclodextrins in a multilayer framework composed of d-penicillaminato AuI3CoIII2 complex anions and aqua sodium(i) cations via solvent-mediated structural transformations are reported.
Collapse
Affiliation(s)
- Supattra Somsri
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 502000, Thailand
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
10
|
|
11
|
Nath A, Asha KS, Mandal S. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry 2021; 27:11482-11538. [PMID: 33857340 DOI: 10.1002/chem.202100610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Smarter and minimization of devices are consistently substantial to shape the energy landscape. Significant amounts of endeavours have come forward as promising steps to surmount this formidable challenge. It is undeniable that material scientists were contemplating smarter material beyond purely inorganic or organic materials. To our delight, metal-organic frameworks (MOFs), an inorganic-organic hybrid scaffold with unprecedented tunability and smart functionalities, have recently started their journey as an alternative. In this review, we focus on such propitious potential of MOFs that was untapped over a long time. We cover the synthetic strategies and (or) post-synthetic modifications towards the formation of conductive MOFs and their underlying concepts of charge transfer with structural aspects. We addressed theoretical calculations with the experimental outcomes and spectroelectrochemistry, which will trigger vigorous impetus about intrinsic electronic behaviour of the conductive frameworks. Finally, we discussed electrocatalysts and energy storage devices stemming from conductive MOFs to meet energy demand in the near future.
Collapse
Affiliation(s)
- Akashdeep Nath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - K S Asha
- School of Chemistry and Biochemistry, M. S. Ramaiah College of Arts Science and Commerce, Bangaluru, 560054, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
12
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Sarkar R, Kar M, Habib M, Zhou G, Frauenheim T, Sarkar P, Pal S, Prezhdo OV. Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. J Am Chem Soc 2021; 143:6649-6656. [PMID: 33896175 DOI: 10.1021/jacs.1c02325] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanotubes (CNTs) are appealing candidates for solar and optoelectronic applications. Traditionally used as electron sinks, CNTs can also perform as electron donors, as exemplified by coupling with perylenediimide (PDI). To achieve high efficiencies, electron transfer (ET) should be fast, while subsequent charge recombination should be slow. Typically, defects are considered detrimental to material performance because they accelerate charge and energy losses. We demonstrate that, surprisingly, common CNT defects improve rather than deteriorate the performance. CNTs and other low dimensional materials accommodate moderate defects without creating deep traps. At the same time, charge redistribution caused by CNT defects creates an additional electrostatic potential that increases the CNT work function and lowers CNT energy levels relative to those of the acceptor species. Hence, the energy gap for the ET is decreased, while the gap for the charge recombination is increased. The effect is particularly important because charge acceptors tend to bind near defects due to enhanced chemical interactions. The time-domain simulation of the excited-state dynamics provides an atomistic picture of the observed phenomenon and characterizes in detail the electronic states, vibrational motions, inelastic and elastic electron-phonon interactions, and time scales of the charge separation and recombination processes. The findings should apply generally to low-dimensional materials, because they dissipate defect strain better than bulk semiconductors. Our calculations reveal that CNT performance is robust to common defects and that moderate defects are essential rather than detrimental for CNT application in energy, electronics, and related fields.
Collapse
Affiliation(s)
- Ritabrata Sarkar
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Moumita Kar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Md Habib
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany.,Shenzhen JL Computational Science and Applied Research Institute (CSAR), Shenzhen 518110, China.,Beijing Computational Science Research Center (CSRC), Beijing 100193, China
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Saura‐Sanmartin A, Martinez‐Cuezva A, Marin‐Luna M, Bautista D, Berna J. Effective Encapsulation of C
60
by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Alberto Martinez‐Cuezva
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Marta Marin‐Luna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC) Area Cientifica y Tecnica de Investigacion (ACTI) Universidad de Murcia 30100 Murcia Spain
| | - Jose Berna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
15
|
Thanasekaran P, Su CH, Liu YH, Lu KL. Hydrophobic Metal-Organic Frameworks and Derived Composites for Microelectronics Applications. Chemistry 2021; 27:16543-16563. [PMID: 33890702 DOI: 10.1002/chem.202100241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 12/25/2022]
Abstract
The extraordinary characteristic features of metal-organic frameworks (MOFs) make them applicable for use in a variety of fields but their conductivity in microelectronics over a wide relative humidity (RH) range has not been extensively explored. To achieve good performance, MOFs must be stable in water, i. e., under humid conditions. However, the design of ultrastable hydrophobic MOFs with high conductivity for use in microelectronics as conducting and dielectric materials remains a challenge. In this Review, we discuss applications of an emerging class of hydrophobic MOFs with respect to their use as active sensor coatings, tunable low-κ dielectrics and conductivity, which provide high-level roadmap for stimulating the next steps toward the development and implementation of hydrophobic MOFs for use in microelectronic devices. Several methodologies including the incorporation of long alkyl chain and fluorinated linkers, doping of redox-active 7,7,8,8-tetracyanoquinodimethane (TCNQ), the use of guest molecules, and conducting polymers or carbon materials in the pores or surface of MOFs have been utilized to produce hydrophobic MOFs. The contact angle of a water droplet and a coating can be used to evaluate the degree of hydrophobicity of the surface of a MOF. These unique advantages enable hydrophobic MOFs to be used as a highly versatile platform for exploring multifunctional porous materials. Classic representative examples of each category are discussed in terms of coordination structures, types of hydrophobic design, and potential microelectronic applications. Lastly, a summary and outlook as concluding remarks in this field are presented. We envision that future research in the area of hydrophobic MOFs promise to provide important breakthroughs in microelectronics applications.
Collapse
Affiliation(s)
- Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Cing-Huei Su
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yen-Hsiang Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
16
|
Shao B, Chen H, Cui C, Li J, Gonge R. Research Progress on Improvement of Conductivity of MOFs and Their Application in Bionsensors: A Review. CHEM LETT 2021. [DOI: 10.1246/cl.200808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bin Shao
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Hongshuo Chen
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Chuanjin Cui
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Jing Li
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Ruikun Gonge
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| |
Collapse
|
17
|
Saura-Sanmartin A, Martinez-Cuezva A, Marin-Luna M, Bautista D, Berna J. Effective Encapsulation of C 60 by Metal-Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021; 60:10814-10819. [PMID: 33617658 DOI: 10.1002/anie.202100996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Indexed: 12/14/2022]
Abstract
A flexible benzylic amide macrocycle, functionalized with two carboxylic acid groups, was employed as the organic ligand for the preparation of robust copper(II)- and zinc(II)-based metal-organic frameworks. These polymers crystallized in the C2/m space group of the monoclinic crystal system, creating non-interpenetrated channels in one direction with an extraordinary solvent-accessible volume of 46 %. Unlike metal-organic rotaxane frameworks having benzylic amide macrocycles as linkers, the absence of the thread in these novel reticular materials causes a decrease of dimensionality and an improvement of pore size and dynamic guest adaptability. We studied the incorporation of fullerene C60 inside the adjustable pocket generated between two macrocycles connected to the same dinuclear clusters, occupying a remarkable 98 % of the cavities inside the network. The use of these materials as hosts for the selective recognition of different fullerenes was evaluated, mainly encapsulating the smaller size fullerene derivative in several mixtures of C60 and C70 .
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC), Area Cientifica y Tecnica de Investigacion (ACTI), Universidad de Murcia, 30100, Murcia, Spain
| | - Jose Berna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
18
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Souto M, Strutyński K, Melle‐Franco M, Rocha J. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry 2020; 26:10912-10935. [DOI: 10.1002/chem.202001211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Souto
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
20
|
Abstract
![]()
Metal–organic frameworks (MOFs)
are intrinsically porous
extended solids formed by coordination bonding between organic ligands
and metal ions or clusters. High electrical conductivity is rare in
MOFs, yet it allows for diverse applications in electrocatalysis,
charge storage, and chemiresistive sensing, among others. In this
Review, we discuss the efforts undertaken so far to achieve efficient
charge transport in MOFs. We focus on four common strategies that
have been harnessed toward high conductivities. In the “through-bond”
approach, continuous chains of coordination bonds between the metal
centers and ligands’ functional groups create charge transport
pathways. In the “extended conjugation” approach, the
metals and entire ligands form large delocalized systems. The “through-space”
approach harnesses the π–π stacking interactions
between organic moieties. The “guest-promoted” approach
utilizes the inherent porosity of MOFs and host–guest interactions.
Studies utilizing less defined transport pathways are also evaluated.
For each approach, we give a systematic overview of the structures
and transport properties of relevant materials. We consider the benefits
and limitations of strategies developed thus far and provide an overview
of outstanding challenges in conductive MOFs.
Collapse
Affiliation(s)
- Lilia S Xie
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Rubio-Giménez V, Tatay S, Martí-Gastaldo C. Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem Soc Rev 2020; 49:5601-5638. [DOI: 10.1039/c9cs00594c] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review aims to reassess the progress, issues and opportunities in the path towards integrating conductive and magnetically bistable coordination polymers and metal–organic frameworks as active components in electronic devices.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS)
| | - Sergio Tatay
- Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | | |
Collapse
|