1
|
Kim SH, Jo YR, Yim SY, Lee HS. Reaction-controlled shape evolution and insights into the growth mechanism of CsPbBr 3 nanocrystals. J Colloid Interface Sci 2025; 677:697-703. [PMID: 39116567 DOI: 10.1016/j.jcis.2024.07.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The correlation between structural transformation and optical characteristics of cesium lead bromide (CsPbBr3) nanocrystals (NCs) suggests insights into their growth mechanism and optical performance. Systematic control of reaction parameters led to the successful fabrication of on-demand shape-morphing CsPbBr3 NCs. Transmission electron microscopy observations showed that the shape transformation from nanocubes to microcrystals could be accelerated by increasing the precursor:ligand molar ratio and reaction time. Further evidence for orthorhombic CsPbBr3 NCs was obtained from their selected-area electron diffraction pattern, which exhibits a twin domain induced by the presence of large NCs. Likewise, we observed a substantial decrease in photoluminescence (PL) intensity of CsPbBr3 due to surface decomposition or surface ligand loss resulting from increased size. In addition, fusion of smaller particles having other dimensionality induced the increase in the PL full-width at half maximum. In particular, existence of larger bulk material caused a reduction in the peak intensity in the absorption spectra and a trend of decreasing tendency in intensity of the absorption bands related to bromoplumbate species provided direct evidence of fully converted Cs-oleate.
Collapse
Affiliation(s)
- Sung Hun Kim
- Department of Physics, Research Institute Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yong-Ryun Jo
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sang-Youp Yim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Hong Seok Lee
- Department of Physics, Research Institute Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
2
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
3
|
Goldreich A, Prilusky J, Prasad N, Puravankara A, Yadgarov L. Highly Stable CsPbBr 3@MoS 2 Nanostructures: Synthesis and Optoelectronic Properties Toward Implementation into Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404727. [PMID: 39092690 DOI: 10.1002/smll.202404727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Halide perovskites (HPs) have gained significant interest in the scientific and technological sectors due to their unique optical, catalytic, and electrical characteristics. However, the HPs are prone to decomposition when exposed to air, oxygen, or heat. The instability of HP materials limits their commercialization, prompting significant efforts to address and overcome these limitations. Transition metal dichalcogenides, such as MoS2, are chemically stable and are suitable for electronic, optical, and catalytic applications. Moreover, it can be used as a protective media or shell for other nanoparticles. In this study, a novel CsPbBr3@MoS2 core-shell nanostructure (CS-NS) is successfully synthesized by enveloping CsPbBr3 within a MoS2 shell for the first time. Significant stability of CS-NSs dispersed in polar solvents for extended periods is also demonstrated. Remarkably, the hybrid CS-NS exhibits an absorption of MoS2 and quenching of the HP's photoluminescence, implying potential charge or energy transfer from HPs to MoS2. Using finite difference time domain simulations, it is found that the CS-NSs can be utilized to produce efficient solar cells. The addition of a MoS2 shell enhances the performance of CS-NS-based solar cells by 220% compared to their CsPbBr3 counterparts. The innovative CS-NS represents important progress in harnessing HPs for photovoltaic and optoelectronic applications.
Collapse
Affiliation(s)
- Achiad Goldreich
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Jonathan Prilusky
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Neena Prasad
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Akshay Puravankara
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Lena Yadgarov
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| |
Collapse
|
4
|
Ely F, Vieira KO, Reyes-Banda MG, Quevedo-Lopez M. Broadband photodetectors from silane-passivated CsPbBr 3 nanocrystals by ultrasound-mediated synthesis. NANOSCALE 2024; 16:10833-10840. [PMID: 38769851 DOI: 10.1039/d3nr06564b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Perovskite nanocrystals have excellent optical properties but suffer from environmental instability and production up-scaling which limit their commercial application. Here, we report the gram-scale ultrasound-mediated synthesis of silane passivated CsPbBr3 nanocrystals using (3-aminopropyl) triethoxysilane (APTS) as the primary surface ligand surface. The surface engineering endowed the CsPbBr3@SiOR NCs with extended environmental stability, a narrow emission bandwidth and a high photoluminescence quantum yield (PLQY > 75%). Thanks to these excellent optical properties, high-efficiency lateral and vertical photodetectors were fabricated. In particular, the layered vertical photodiode composed of ITO/Ga2O3/CsPbBr3/Au exhibited a broadband photoresponse from 350-700 nm with a responsivity peaking at 44.5.1 A W-1 and specific detectivity above 1013 Jones when illuminated at 470 nm wavelength and biased at +5 V. These results correspond to the best-in-class performance perovskite nanocrystal PD and confirm the extraordinary potential of CsPbBr3@SiOR for the development of efficient optoelectronic devices.
Collapse
Affiliation(s)
- Fernando Ely
- Renato Archer Information Technology Center - CTI, Campinas, SP, 13069-901, Brazil.
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kayo O Vieira
- Renato Archer Information Technology Center - CTI, Campinas, SP, 13069-901, Brazil.
| | - Martin G Reyes-Banda
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Manuel Quevedo-Lopez
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
5
|
Sirna L, Pellegrino AL, Sciacca SP, Lippi M, Rossi P, Bonaccorso C, Bengasi G, Foti M, Malandrino G. Highly stable CsPbBr 3 perovskite phases from new lead β-diketonate glyme adducts. Dalton Trans 2024; 53:5360-5372. [PMID: 38376202 DOI: 10.1039/d3dt03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Lead is one of the key metals of the all-inorganic lead halide perovskites. This work tailors novel architectures of lead's coordination sphere using a β-diketone (H-hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione) and a glyme (monoglyme, diglyme, triglyme, or tetraglyme) ligand. The coordination chemistry and thermal behaviour of these "Pb(hfa)2·glyme" adducts have been analysed through FT-IR spectroscopy, 1H and 13C NMR analyses, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Single-crystal X-ray diffraction studies provide evidence of the formation of a monomeric Pb(hfa)2·monoglyme structure. In order to validate the potentiality of these "Pb(hfa)2·glyme" precursors for the fabrication of Pb-based halide perovskites, a facile, one-step and low-temperature solution approach has been applied to prepare CsPbBr3 microcrystals with a process carried out in air under atmospheric pressure. Pure stoichiometric CsPbBr3 powders, obtained using Cs(hfa) and Br2 as cesium and bromide sources, respectively, show excellent stability under atmospheric conditions. Better results are obtained in terms of yield and stability from the diglyme and tetraglyme lead adducts. Field emission scanning electron microscopy (FE-SEM) indicates a good uniform morphology of cubic grains, while the structure and the 1 : 1 : 3 stoichiometry of Cs : Pb : Br are confirmed by X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX), respectively. Tauc plots derived from absorption spectroscopy point to optical energy band-gaps (Eg) in the 2.21-2.27 eV range, in agreement with literature data. The present research elucidates the potential of these novel "Pb(hfa)2·glyme" adducts as promising lead precursors for CsPbBr3 perovskite synthesis, paving the way for their implementation in various technological applications.
Collapse
Affiliation(s)
- Lorenzo Sirna
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna Lucia Pellegrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Salvatore Pio Sciacca
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Martina Lippi
- Dipartimento di Ingegneria Industriale, Università di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Patrizia Rossi
- Dipartimento di Ingegneria Industriale, Università di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Carmela Bonaccorso
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Marina Foti
- 3SUN s.r.l., Contrada Blocco Torrazze, 95121, Catania, Italy
| | - Graziella Malandrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
6
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
7
|
Scalon L, Freitas FS, Marques FDC, Nogueira AF. Tiny spots to light the future: advances in synthesis, properties, and application of perovskite nanocrystals in solar cells. NANOSCALE 2023; 15:907-941. [PMID: 36629010 DOI: 10.1039/d2nr05043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskites are in the hotspot of material science and technology. Outstanding properties have been discovered, fundamental mechanisms of defect formation and degradation elucidated, and applications in a wide variety of optoelectronic devices demonstrated. Advances through adjusting the bulk-perovskite composition, as well as the integration of layered and nanostructured perovskites in the devices, allowed improvement in performance and stability. Recently, efforts have been devoted to investigating the effects of quantum confinement in perovskite nanocrystals (PNCs) aiming to fabricate optoelectronic devices based solely on these nanoparticles. In general, the applications are focused on light-emitting diodes, especially because of the high color purity and high fluorescence quantum yield obtained in PNCs. Likewise, they present important characteristics featured for photovoltaic applications, highlighting the possibility of stabilizing photoactive phases that are unstable in their bulk analog, the fine control of the bandgap through size change, low defect density, and compatibility with large-scale deposition techniques. Despite the progress made in the last years towards the improvement in the performance and stability of PNCs-based solar cells, their efficiency is still much lower than that obtained with bulk perovskite, and discussions about upscaling of this technology are scarce. In light of this, we address in this review recent routes towards efficiency improvement and the up-scaling of PNC solar cells, emphasizing synthesis management and strategies for solar cell fabrication.
Collapse
Affiliation(s)
- Lucas Scalon
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| | - Flavio Santos Freitas
- Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais 30421-169, Brazil
| | | | - Ana Flávia Nogueira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| |
Collapse
|
8
|
Rao L, Sun B, Liu Y, Zhong G, Wen M, Zhang J, Fu T, Wang S, Wang F, Niu X. Highly Stable and Photoluminescent CsPbBr 3/Cs 4PbBr 6 Composites for White-Light-Emitting Diodes and Visible Light Communication. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:355. [PMID: 36678108 PMCID: PMC9861840 DOI: 10.3390/nano13020355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Inorganic lead halide perovskite is one of the most excellent fluorescent materials, and it plays an essential role in high-definition display and visible light communication (VLC). Its photochromic properties and stability determine the final performance of light-emitting devices. However, efficiently synthesizing perovskite with high quality and stability remains a significant challenge. Here, we develop a facile and environmentally friendly method for preparing high-stability and strong-emission CsPbBr3/Cs4PbBr6 composites using ultrasonication and liquid paraffin. Tuning the contents of liquid paraffin, bright-emission CsPbBr3/Cs4PbBr6 composite powders with a maximum PLQY of 74% were achieved. Thanks to the protection of the Cs4PbBr6 matrix and liquid paraffin, the photostability, thermostability, and polar solvent stability of CsPbBr3/Cs4PbBr6-LP are significantly improved compared to CsPbBr3 quantum dots and CsPbBr3/Cs4PbBr6 composites that were prepared without liquid paraffin. Moreover, the fabricated CsPbBr3/Cs4PbBr6-LP-based WLEDs show excellent luminescent performance with a power efficiency of 129.5 lm/W and a wide color gamut, with 121% of the NTSC and 94% of the Rec. 2020, demonstrating a promising candidate for displays. In addition, the CsPbBr3/Cs4PbBr6-LP-based WLEDs were also demonstrated in a VLC system. The results suggested the great potential of these high-performance WLEDs as an excitation light source to achieve VLC.
Collapse
Affiliation(s)
- Longshi Rao
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Bin Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yang Liu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Guisheng Zhong
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Mingfu Wen
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Jiayang Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Ting Fu
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuangxi Wang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Fengtao Wang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Xiaodong Niu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
9
|
Rao L, Sun B, Zhang Q, Wen M, Zhang J, Zhong G, Fu T, Niu X, Tang Y. Highly emissive green CsPbBr 3/Cs 4PbBr 6 composites: formation kinetics, excellent heat, light, and polar solvent resistance, and flexible light-emitting application. OPTICS EXPRESS 2022; 30:45376-45392. [PMID: 36522944 DOI: 10.1364/oe.474545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Benefit from their near-unity photoluminescence quantum yield (PL QY), narrow emission band, and widely tunable bandgap, metal halide perovskites have shown promising in light-emitting applications. Despite such promise, how to facile, environmentally-friendly, and large-scale prepare solid metal halide perovskite with high emission and stability remains a challenging. Herein, we demonstrate a convenient and environmentally-friendly method for the mass synthesis of solid CsPbBr3/Cs4PbBr6 composites using high-power ultrasonication. Adjusting key experimental parameters, bright emitting CsPbBr3/Cs4PbBr6 solids with a maximum PL QY of 71% were obtained within 30 min. XRD, SEM, TEM, Abs/PL, XPS, and lifetime characterizations provide solid evidence for forming CsPbBr3/Cs4PbBr6 composites. Taking advantage of these composites, the photostability, thermostability, and polar solvent stability of CsPbBr3/Cs4PbBr6 are much improved compared to CsPbBr3. We further demonstrated CsPbBr3/Cs4PbBr6 use in flexible/stretchable film and high-power WLEDs. After being subjected to bending, folding, and twisting, the film retains its bright emission and exhibits good resistance to mechanical deformation. Additionally, our WLEDs display a superior, durable high-power-driving capability, operating currents up to 300 mA and maintaining high luminous intensity for 50 hours. Such highly emissive and stable metal halide perovskites make them promising for solid-state lighting, lasing, and flexible/stretchable display device applications.
Collapse
|
10
|
Gu R, Li X, Meng Y, Li Z, Nie H, Wang X, Xiao D. A handy imaging sensor array based on the phase transformation from CsPbBr 3 to CsPb 2Br 5: highly sensitive and rapid detection of water content in ethanol. Analyst 2022; 147:4228-4236. [DOI: 10.1039/d2an01016j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work proposes a handy imaging sensor array based on the phase transformation from CsPbBr3 to CsPb2Br5 for highly sensitive and rapid detection of the water content in ethanol.
Collapse
Affiliation(s)
- Rongmeng Gu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiuting Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yan Meng
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China
| | - Zhihui Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongyu Nie
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaokun Wang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dan Xiao
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Bera S, Behera RK, Das Adhikari S, Guria AK, Pradhan N. Equilibriums in Formation of Lead Halide Perovskite Nanocrystals. J Phys Chem Lett 2021; 12:11824-11833. [PMID: 34870990 DOI: 10.1021/acs.jpclett.1c03461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Physical insights related to ion equilibrium involved in the synthesis of lead halide perovskite nanocrystals remain key parameters for regulating the phase stability and luminescence intensity of these emerging materials. These have been extensively studied since the development of these nanocrystals, and different reaction processes controlling the formation of CsPbX3 nanocrystals are largely understood. However, growth kinetics related to the formation of these nanocrystals have not been established yet. Hence, more fundamental understanding of the formation processes of these nanocrystals is urgently required. Keeping these in mind and emphasizing the most widely studied nanocrystals of CsPbBr3, different equilibrium processes involved in their synthesis for phase and composition variations are summarized and discussed in this Perspective. In addition, implementations of these findings for shape modulations by growth are discussed, and several new directions of research for understanding more fundamental insights are also presented.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Samrat Das Adhikari
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Amit K Guria
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Recent progress on the modifications of ultra-small perovskite nanomaterials for sensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Chaudhary B, Kshetri YK, Kim HS, Lee SW, Kim TH. Current status on synthesis, properties and applications of CsPbX 3(X = Cl, Br, I) perovskite quantum dots/nanocrystals. NANOTECHNOLOGY 2021; 32:502007. [PMID: 34500445 DOI: 10.1088/1361-6528/ac2537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The quantum confinement effect and interesting optical properties of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite quantum dots (QDs) and nanocrystals (NCs) have given a new horizon to lighting and photonic applications. Given the exponential rate at which scientific results on CsPbX3NCs are published in the last few years, it can be expected that the research in CsPbX3NCs will further receive increasing scientific interests in the near future and possibly lead to great commercial opportunities to realize these materials based practical applications. With the rapid progress in the single-photon emitting CsPbX3QDs and NCs, practical applications of the quantum technologies such as single-photon emitting light-emitting diode, quantum lasers, quantum computing might soon be possible. But to reach at cutting edge of stable perovskite QDs/NCs, the study of fundamental insight and theoretical aspects of crystal design is yet insufficient. Even more, it has aroused many unanswered questions related to the stability, optical and electronic properties of the CsPbX3QDs. Aim of the present review is to illustrate didactically a precise study of recent progress in the synthesis, properties and applications of CsPbX3QDs and NCs. Critical issues that currently restrict the applicability of these QDs will be identified and advanced methodologies currently in the developing queue, to overcome the roadblock, will be presented. And finally, the prospects for future directions will be provided.
Collapse
Affiliation(s)
- Bina Chaudhary
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Yuwaraj K Kshetri
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Hak-Soo Kim
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Soo Wohn Lee
- Department of Environment and Chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea
| | - Tae-Ho Kim
- Department of Fusion Science and Technology, Sun Moon University, Chungnam, 31460, Republic of Korea
- Research Center for Eco-multifunctional Nano Materials, Sun Moon University, Chungnam, 31460, Republic of Korea
| |
Collapse
|
14
|
Green and efficient photodegradation of norfloxacin with CsPbBr3-rGO/Bi2WO6 S-scheme heterojunction photocatalyst. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
16
|
Děcká K, Suchá A, Král J, Jakubec I, Nikl M, Jarý V, Babin V, Mihóková E, Čuba V. On the Role of Cs 4PbBr 6 Phase in the Luminescence Performance of Bright CsPbBr 3 Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1935. [PMID: 34443766 PMCID: PMC8400622 DOI: 10.3390/nano11081935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
CsPbBr3 nanocrystals have been identified as a highly promising material for various optoelectronic applications. However, they tend to coexist with Cs4PbBr6 phase when the reaction conditions are not controlled carefully. It is therefore imperative to understand how the presence of this phase affects the luminescence performance of CsPbBr3 nanocrystals. We synthesized a mixed CsPbBr3-Cs4PbBr6 sample, and compared its photo- and radioluminescence properties, including timing characteristics, to the performance of pure CsPbBr3 nanocrystals. The possibility of energy transfer between the two phases was also explored. We demonstrated that the presence of Cs4PbBr6 causes significant drop in radioluminescence intensity of CsPbBr3 nanocrystals, which can limit possible future applications of Cs4PbBr6-CsPbBr3 mixtures or composites as scintillation detectors.
Collapse
Affiliation(s)
- Kateřina Děcká
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Adéla Suchá
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
| | - Jan Král
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
| | - Ivo Jakubec
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Řež č.p. 1001, 250 68 Řež, Czech Republic;
| | - Martin Nikl
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Vítězslav Jarý
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Vladimir Babin
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Eva Mihóková
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (M.N.); (V.J.); (V.B.); (E.M.)
| | - Václav Čuba
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic; (A.S.); (J.K.); (V.Č.)
| |
Collapse
|
17
|
Improving photovoltaic performance of CsPbBr3 perovskite solar cells by a solvent-assisted rinsing step. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Lu CH, Biesold-McGee GV, Liu Y, Kang Z, Lin Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem Soc Rev 2020; 49:4953-5007. [PMID: 32538382 DOI: 10.1039/c9cs00790c] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX3, where A is a monovalent cation (which can be either organic (e.g., CH3NH3+ (MA), CH(NH2)2+ (FA)) or inorganic (e.g., Cs+)), B is a divalent metal cation (usually Pb2+), and X is a halogen anion (Cl-, Br-, I-). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties (e.g., absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A', B', or X' site ions into the A, B, or X sites of ABX3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed.
Collapse
Affiliation(s)
- Cheng-Hsin Lu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill V Biesold-McGee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yijiang Liu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan Province 411105, P. R. China.
| | - Zhitao Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. and Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
19
|
Choi SH, Kwon SB, Yoo JH, Song YH, Kim JP, Kang BK, Yoon DH. Hydraulic shear-induced rapid mass production of CsPbBr 3/Cs 4PbBr 6 perovskite composites. NEW J CHEM 2020. [DOI: 10.1039/d0nj02016h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure green CsPbBr3/Cs4PbBr6 perovskite composites were synthesized by generating hydraulic shear as a rapid mass synthesis strategy.
Collapse
Affiliation(s)
- Seung Hee Choi
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
| | - Seok Bin Kwon
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
| | - Jung Hyeon Yoo
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
| | - Young Hyun Song
- Photoconversion Material Research Center
- Korea Photonics Technology Institute (KOPTI)
- Gwangju 61007
- Republic of Korea
| | - Jae Pil Kim
- Photoconversion Material Research Center
- Korea Photonics Technology Institute (KOPTI)
- Gwangju 61007
- Republic of Korea
| | - Bong Kyun Kang
- Electronic Materials and Device Research Center
- Korea Electronics Technology Institute (KETI)
- Seongnam
- Republic of Korea
| | - Dae Ho Yoon
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT)
| |
Collapse
|
20
|
Yang L, Wang T, Yang X, Zhang M, Pi C, Yu J, Zhou D, Yu X, Qiu J, Xu X. Extrinsic photoluminescence properties of individual micro-particle of Cs 4PbBr 6 perovskite with "defect" structure. OPTICS EXPRESS 2019; 27:31207-31216. [PMID: 31684355 DOI: 10.1364/oe.27.031207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Optical performance of the lead halide perovskites with zero-dimension (0D) structure has been in a hot debate for optoelectronic applications. Here, Cs4PbBr6 hexagonal micro-particles with a remarkable green emission are first fabricated via a low-temperature solution-process employed ethanol as solvent. Our results underline that the existence of bromine vacancies and the introduction of hydroxyl induce a narrowed band gap with the formation of a defect level, which contributes to the extrinsic photoluminescence (PL) properties synergistically. Thanks to the high exciton binding energy and the unique morphology with a regular geometric structure of the as-obtained micro-particles, two-photon pumped amplified spontaneous emission (ASE) and single mode lasing from an individual Cs4PbBr6 particle are realized. Our results not only provide an insight into the origin of optical emission from Cs4PbBr6, but also demonstrate that the versatile Cs4PbBr6 offers a new opportunity for novel nonlinear photonics applications as an up-conversion laser.
Collapse
|
21
|
Li Z, Song C, Rao L, Lu H, Yan C, Cao K, Ding X, Yu B, Tang Y. Synthesis of Highly Photoluminescent All-Inorganic CsPbX 3 Nanocrystals via Interfacial Anion Exchange Reactions. NANOMATERIALS 2019; 9:nano9091296. [PMID: 31514284 PMCID: PMC6781013 DOI: 10.3390/nano9091296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 11/16/2022]
Abstract
All-inorganic cesium lead halide perovskite CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) have attracted significant attention owing to their fascinating electronic and optical properties. However, researchers still face challenges to achieve highly stable and photoluminescent CsPbX3 NCs at room temperature by the direct-synthesis method. Herein, we synthesize CsPbX3 NCs by a facile and environmentally friendly method, which uses an aqueous solution of metal halides to react with Cs4PbBr6 NCs via interfacial anion exchange reactions and without applying any pretreatment. This method produces monodisperse and air-stable CsPbX3 NCs with tunable spectra covering the entire visible range, narrow photoluminescence emission bandwidth, and high photoluminescence quantum yield (PL QY, 80%). In addition, the chemical transformation mechanism between Cs4PbBr6 NCs and CsPbX3 NCs was investigated. The Cs4PbBr6 NCs were converted to CsPbBr3 NCs first by stripping CsBr, and then, the as-prepared CsPbBr3 NCs reacted with metal halides to form CsPbX3 NCs. This work takes advantage of the chemical transformation mechanism of Cs4PbBr6 NCs and provides an efficient and environmentally friendly way to synthesize CsPbX3 NCs.
Collapse
Affiliation(s)
- Zongtao Li
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Cunjiang Song
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Longshi Rao
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
- College of Engineering, Shantou University, Shantou 515063, China.
| | - Hanguang Lu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Caiman Yan
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kai Cao
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xinrui Ding
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Binhai Yu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yong Tang
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|