1
|
Brandão ATSC, Rosoiu-State S, Costa R, Enache LB, Mihai GV, Potorac P, Invêncio I, Vázquez JA, Valcarcel J, Silva AF, Anicai L, Pereira CM, Enachescu M. Boosting Supercapacitor Efficiency with Amorphous Biomass-Derived C@TiO 2 Composites. CHEMSUSCHEM 2024; 17:e202301671. [PMID: 38728171 DOI: 10.1002/cssc.202301671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Carbon materials are readily available and are essential in energy storage. One of the routes used to enhance their surface area and activity is the decoration of carbons with semiconductors, such as amorphous TiO2, for application in energy storage devices.
Collapse
Affiliation(s)
- Ana T S C Brandão
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Sabrina Rosoiu-State
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061, Bucharest, Romania
| | - Renata Costa
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Laura-Bianca Enache
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
| | - Geanina Valentina Mihai
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
| | - Pavel Potorac
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
| | - Inês Invêncio
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - José A Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), 36208, Vigo, Spain
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), 36208, Vigo, Spain
| | - A Fernando Silva
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Liana Anicai
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
- OLV Development SRL, Brasoveni 3, 023613, Bucharest, Romania
| | - Carlos M Pereira
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania
| |
Collapse
|
2
|
Kenawy ER, Moharram YI, Abouharga FS, Elfiky M. Electrospun network based on polyacrylonitrile-polyphenyl/titanium oxide nanofibers for high-performance supercapacitor device. Sci Rep 2024; 14:6683. [PMID: 38509116 PMCID: PMC10954625 DOI: 10.1038/s41598-024-56545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Nanofibers and mat-like polyacrylonitrile-polyphenyl/titanium oxide (PAN-Pph./TiO2) with proper electrochemical properties were fabricated via a single-step electrospinning technique for supercapacitor application. Scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), thermogravimetry (TGA), fourier transform infrared (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were conducted to characterize the morphological and chemical composition of all fabricated nanofibers. Furthermore, the electrochemical activity of the fabricated nanofibers for energy storage applications (supercapacitor) was probed by cyclic voltammetry (CV), charge-discharge (CD), and electrochemical impedance spectroscopy (EIS). The PAN-PPh./TiO2 nanofiber electrode revealed a proper specific capacitance of 484 F g-1 at a current density of 11.0 A g-1 compared with PAN (198 F g-1), and PAN-PPh. (352 F g-1) nanofibers using the charge-discharge technique. Furthermore, the PAN-PPh./TiO2 nanofiber electrode displayed a proper energy density of 16.8 Wh kg-1 at a power density (P) of 2749.1 Wkg-1. Moreover, the PAN-PPh./TiO2 nanofiber electrode has a low electrical resistance of 23.72 Ω, and outstanding cycling stability of 79.38% capacitance retention after 3000 cycles.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Youssef I Moharram
- Analytical and Electrochemistry Research UNIT, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Fatma S Abouharga
- Analytical and Electrochemistry Research UNIT, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona Elfiky
- Analytical and Electrochemistry Research UNIT, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Li S, Li S, Wang Y, Tang C, Qiu L, Yu S. Selective Oxidation of Glycerol to Lactic Acid Catalyzed by CuO/Activated Carbon and Reaction Kinetics. ACS OMEGA 2024; 9:10583-10591. [PMID: 38463287 PMCID: PMC10918785 DOI: 10.1021/acsomega.3c08845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Activated carbon-supported CuO catalysts were prepared by an ammonia evaporation method and applied to catalyze the selective oxidation of glycerol to lactic acid. The effects of CuO loadings on the structure and catalytic performance of the catalyst were investigated. Results showed that CuO could be dispersed uniformly on the surface of activated carbon, promoting the increase of the reaction rate and accelerating the glycerol conversion significantly. As CuO loadings increased, the rate of glycerol consumption and yield to lactic acid was increased. However, too high CuO loadings would destroy the original pore structure of activated carbon and aggravate the agglomeration of CuO, resulting in a decrease in the catalytic performance of the catalyst. The best catalytic performance was obtained over 10% CuO/AC when the reaction temperature was 190 °C and the reaction time was 5 h. At this point, the selectivity to lactic acid reached 92.61%. In addition, power-function type reaction kinetic equations were used to evaluate the effect of glycerol and NaOH concentrations and the reaction temperature on the oxidation of glycerol to lactic acid over 10% CuO/AC. The activation energy of the reaction is 134.39 kJ·mol-1, which is higher than that using single CuO as the catalyst. This indicates that CuO/AC is more temperature-sensitive than CuO and can probably achieve a higher lactic acid yield at high temperatures. At the same time, it is indicated that CuO supported on activated carbon can enhance the catalytic activity of CuO effectively.
Collapse
Affiliation(s)
- Shanqi Li
- College of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shuangming Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yiwen Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Cheng Tang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Leilei Qiu
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Sansan Yu
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
4
|
Saleem M, Albaqami MD, Bahajjaj AAA, Ahmed F, Din E, Arifeen WU, Ali S. Wet-Chemical Synthesis of TiO 2/PVDF Membrane for Energy Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010285. [PMID: 36615478 PMCID: PMC9822136 DOI: 10.3390/molecules28010285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
To satisfy the ever-increasing energy demands, it is of the utmost importance to develop electrochemical materials capable of producing and storing energy in a highly efficient manner. Titanium dioxide (TiO2) has recently emerged as a promising choice in this field due to its non-toxicity, low cost, and eco-friendliness, in addition to its porosity, large surface area, good mechanical strength, and remarkable transport properties. Here, we present titanium dioxide nanoplates/polyvinylidene fluoride (TiO2/PVDF) membranes prepared by a straightforward hydrothermal strategy and vacuum filtration process. The as-synthesized TiO2/PVDF membrane was applied for energy storage applications. The fabricated TiO2/PVDF membrane served as the negative electrode for supercapacitors (SCs). The electrochemical properties of a TiO2/PVDF membrane were explored in an aqueous 6 M KOH electrolyte that exhibited good energy storage performance. Precisely, the TiO2/PVDF membrane delivered a high specific capacitance of 283.74 F/g at 1 A/g and maintained capacitance retention of 91% after 8000 cycles. Thanks to the synergistic effect of TiO2 and PVDF, the TiO2/PVDF membrane provided superior electrochemical performance as an electrode for a supercapacitor. These superior properties will likely be used in next-generation energy storage technologies.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Fahim Ahmed
- Department of Physics, Division of Science and Technology, University of Education, Lahore 54000, Pakistan
| | - ElSayed Din
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Republic of Korea
- Correspondence: (W.U.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (W.U.A.); (S.A.)
| |
Collapse
|
5
|
Pascariu P, Homocianu M, Vacareanu L, Asandulesa M. Multi-Functional Materials Based on Cu-Doped TiO 2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics. Polymers (Basel) 2022; 14:4739. [PMID: 36365732 PMCID: PMC9654394 DOI: 10.3390/polym14214739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2024] Open
Abstract
In this work, pure TiO2 and Cu (0.5, 1, 2%)-doped TiO2 composites prepared by electrospinning technique followed by calcination at 900 °C, and having high pseudocapacitive and dielectric characteristics were reported. These nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, and dynamic water sorption vapor measurements. The structural characterization of these nanostructures highlighted good crystallinity including only the rutile phase. The electrochemical characteristics were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements, which were performed in a KOH electrolyte solution. Among the Cu-doped TiO2 nanostructures that were prepared, the one containing 0.5% Cu exhibited superior electrochemical properties, including high specific gravimetric capacitance of 1183 F·g-1, specific capacitance of 664 F·g-1, energy density of 45.20 Wh·kg-1, high power density of 723.14 W·kg-1, and capacitance retention of about 94% after 100 cycles. The dielectric investigation shows good dielectric properties for all materials, where the dielectric constant and the dielectric loss decreased with the frequency increase. Thus, all the interconnected studies proved that these new materials show manifold ability and real applicative potential as pseudocapacitors and high-performance dielectrics. Future work and perspectives are anticipated for characterizing electrochemical and dielectric properties for materials including larger amounts of Cu dopant.
Collapse
Affiliation(s)
- Petronela Pascariu
- ”Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | | | | | | |
Collapse
|
6
|
Suganya M, Kishor Kumar J, Anand S, Mohamed Racik K, Muthupandi S, Muniyappan S, Nandhini S. Synthesis and electrochemical investigation of Z-type barium hexaferrite nanoplatelets. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Rajak R, Saraf M, Kumar P, Natarajan K, Mobin SM. Construction of a Cu-Based Metal-Organic Framework by Employing a Mixed-Ligand Strategy and Its Facile Conversion into Nanofibrous CuO for Electrochemical Energy Storage Applications. Inorg Chem 2021; 60:16986-16995. [PMID: 34699204 DOI: 10.1021/acs.inorgchem.1c02062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, metal-organic frameworks (MOFs) have been widely employed as a sacrificial template for the construction of nanostructured materials for a range of applications including energy storage. Herein, we report a facile mixed-ligand strategy for the synthesis of a Cu-MOF, [Cu3(Azopy)3(BTTC)3(H2O)3·2H2O]n (where BTTC = 1,2,4,5-benzenetetracarboxylic acid and Azopy = 4,4'-azopyridine), via a slow-diffusion method at room temperature. X-ray analysis authenticates the two-dimensional (2D)-layered framework of Cu-MOF. Topologically, this 2D-layered structure is assigned as a 4-connected unimodal net with sql topology. Further, nanostructured CuO is obtained via a simple precipitation method by employing Cu-MOF as a precursor. After analysis of their physicochemical properties through various techniques, both materials are used as surface modifiers of glassy carbon electrodes for a comparative electrochemical study. The results reveal a superior charge storage performance of CuO (244.2 F g-1 at a current density of 0.8 A g-1) with a high rate capability compared to Cu-MOF. This observation paves the pathway for the strategic design of high-performing supercapacitor electrode materials.
Collapse
Affiliation(s)
- Richa Rajak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Mohit Saraf
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.,A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kaushik Natarajan
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.,Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.,Center for Electric Vehicle and Intelligent Transport Systems, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
8
|
Saliu O, Mamo M, Ndungu P, Ramontja J. The making of a high performance supercapacitor active at negative potential using sulphonic acid activated starch-gelatin-TiO2 nano-hybrids. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Shen E, Song X, Chen Q, Zheng M, Bian J, Liu H. Spontaneously Forming Oxide Layer of High Entropy Alloy Nanoparticles Deposited on Porous Carbons for Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202001289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Enhui Shen
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Xuehua Song
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Qibin Chen
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Mengmeng Zheng
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Jianqing Bian
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Honglai Liu
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| |
Collapse
|
10
|
Aslan S. An electrochemical immunosensor modified with titanium IV oxide/polyacrylonitrile nanofibers for the determination of a carcinoembryonic antigen. NEW J CHEM 2021. [DOI: 10.1039/d0nj05385f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly sensitive electrochemical carcinoembryonic antigen immunosensor based on TiO2np/polyacrylonitrile nanofibers electrospun on the surface of the discharged battery coal electrode.
Collapse
Affiliation(s)
- Sema Aslan
- Department of Chemistry
- Faculty of Science
- Mugla Sitki Kocman University
- Muğla
- Turkey
| |
Collapse
|
11
|
Aslan S, Bal Altuntaş D, Koçak Ç, Kara Subaşat H. Electrochemical Evaluation of Titanium (IV) Oxide/Polyacrylonitrile Electrospun Discharged Battery Coals as Supercapacitor Electrodes. ELECTROANAL 2020. [DOI: 10.1002/elan.202060239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sema Aslan
- Department of Chemistry Faculty of Science Mugla Sitki Kocman University Muğla Turkey
| | - Derya Bal Altuntaş
- Department of Bioengineering Faculty of Engineering Recep Tayyip Erdogan University Rize Turkey
| | - Çağdaş Koçak
- Department of Physics Faculty of Science Mugla Sitki Kocman University Muğla Turkey
| | - Hülya Kara Subaşat
- Department of Energy Graduate School of Natural and Applied Sciences Mugla Sıtkı Kocman University 48170 Mugla Turkey
| |
Collapse
|
12
|
Redox-active polymer hydrogel electrolyte in biowaste-derived microporous carbon-based high capacitance and energy density ultracapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Jiang Q, Liu M, Shao C, Li X, Liu H, Li X, Liu Y. Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Lal MS, Sundara R. High Entropy Oxides-A Cost-Effective Catalyst for the Growth of High Yield Carbon Nanotubes and Their Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30846-30857. [PMID: 31389678 DOI: 10.1021/acsami.9b08794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This report anticipates a thorough strategy for the utilization of high entropy oxide (HEO) nanoparticles (1) as a cost-effective catalyst for the growth of high yield carbon nanotubes (CNTs), resulting in HEO-CNT nanocomposites, and (2) the implementation of HEO-CNT nanocomposites for energy applications such as electrochemical capacitors (ECs). In the first step, HEO nanoparticles were synthesized by a simple sol-gel autocombustion method and then the as-synthesized HEO nanoparticles were ground and used as the catalyst for the growth of CNTs by chemical vapor deposition technique. The as-grown CNTs (HEO-CNT nanocomposite) exhibited unexpectedly high yield, a superior specific surface area of ∼151 m2 g-1, and encapsulation and diffusion of the catalyst throughout the HEO-CNT nanocomposite, providing remarkably high mechanical strength, which make them a promising candidate for energy applications. To study the electrochemical activity of the HEO-CNT nanocomposite, half-cell and full-cell ECs were assembled in different electrolytes. Stupendously, a complete 100% capacitance retention and a Coulombic efficiency up to 15 000 cycles were realized for the HEO-CNT nanocomposite-based full-cell EC assembled in the polyvinyl alcohol/H2SO4 hydrogel electrolyte. Additionally, a high specific capacitance value of 286.0 F g-1 at a scan rate of 10 mV s-1 for the HEO-CNT nanocomposite-based full-cell EC assembled in the [BMIM][TFSI] electrolyte with a wide potential window of 2.5 V is reported. Also, high energy density and power density of ∼217 W h kg-1 and ∼24 521 W kg-1, respectively, are reported. Furthermore, the HEO-CNT nanocomposite-based full-cell EC assembled in the [BMIM][TFSI] electrolyte can successfully light up a red light-emitting diode, demonstrating great potential of the HEO-CNT nanocomposite in the various energy applications.
Collapse
Affiliation(s)
- Mamta Sham Lal
- Alternative Energy and Nanotechnology Laboratory (AENL), Department of Physics , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Ramaprabhu Sundara
- Alternative Energy and Nanotechnology Laboratory (AENL), Department of Physics , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|