1
|
Sen S, Roy S. Designing highly tunable anion responsive Cardin-motif peptide based self-assembled nanostructures for accessing diverse cellular response. Colloids Surf B Biointerfaces 2024; 245:114315. [PMID: 39427396 DOI: 10.1016/j.colsurfb.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Several anions present in the extracellular matrix (ECM) not only have significant physiological functions in ECM but also play an important role in regulating peptide-based self-assembly. Herein, we have employed a non-conventional approach to overcome the limitations of the positively charged Cardin-motif peptide that failed to self-assemble at physiological pH. We used a simple and elegant strategy by employing different anions such as HPO42-, Cl- and I- to mask the overall surface charge of peptide. Interestingly, these anions were utilized to modulate the nanostructure formation and mechanical stiffness of peptide hydrogels owing to their differential interactions with water molecules according to the Hofmeister series. Interestingly, these anions induced hydrogels showed diverse cellular responses on two different cell lines, fibroblast and neuronal, indicating diverse application potential of the new scaffold. Thus, this study emphasizes the importance of anions to regulate the self-assembly of Cardin-motif peptide and this approach can be utilized in developing the ideal biomimetic model of ECM for futuristic applications.
Collapse
Affiliation(s)
- Sourav Sen
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Alcântara ACS, González-Alfaro Y, Darder M, Ruiz-Hitzky E, Aranda P. Magnetite-sepiolite nanoarchitectonics for improving zein-based bionanocomposite foams. Dalton Trans 2023; 52:16951-16962. [PMID: 37930107 DOI: 10.1039/d3dt02845c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Magnetic nanoarchitectures have been used to introduce multifunctionality in biopolymeric matrices. Bionanocomposite foams based on the corn protein zein were prepared for the first time using the hydrophobic properties of zein in a sequential treatment consisting of the removal of ethanol-soluble fractions, followed by the water swelling of the remaining phase and a further freeze-drying process. When this protocol is applied to zein pellets, they can be consolidated as porous monoliths. Moreover, it is possible to incorporate diverse types of inorganic nanoparticles in the starting pellet to produce the bionanocomposite foams. In particular, the preparation of superparamagnetic foams has been explored using two approaches: the direct incorporation of magnetite nanoparticles in a ferrofluid by impregnation in the foams, and the application of the foaming process to mixtures of zein with magnetite nanoparticles alone or previously assembled into sepiolite clay fibers. The first methodology leads to the production of inhomogeneous foams, while the use of magnetite nanoparticles and better Fe3O4-sepiolite nanoarchitectured materials as fillers results in more homogeneous materials with improved water stability and mechanical properties, offering superparamagnetic behavior. The resulting multifunctional foams have been tested in adsorption processes using the herbicide 4-chloro-2-methylphenoxyacetic acid as a model pollutant, confirming their potential utility in decontamination applications in open waters as they can be easily recovered from the aqueous medium using a magnet.
Collapse
Affiliation(s)
- Ana C S Alcântara
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Yorexis González-Alfaro
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Li X, Jian H, Han Q, Wang A, Li J, Man N, Li Q, Bai S, Li J. Three-dimensional (3D) bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect. J Colloid Interface Sci 2023; 639:1-6. [PMID: 36796110 DOI: 10.1016/j.jcis.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Short peptide self-assembled hydrogels as 3D bioprinting inks show excellent biocompatibility and diverse functional expansion, and have broad application prospects in cell culture and tissue engineering. However, the preparation of biological hydrogel inks with adjustable mechanical strength and controllable degradation for 3D bioprinting still faces big challenges. Herein, we develop dipeptide bio-inks that can be gelled in-situ based on Hofmeister sequence, and prepare hydrogel scaffold by using a layer-by-layer 3D printing strategy. Excitingly, after the introduction of Dulbecco's Modified Eagle's medium (DMEM), which is necessary for cell culture, the hydrogel scaffolds show an excellent toughening effect, which matches the needs of cell culture. It's notable that in the whole process of preparation and 3D printing of hydrogel scaffolds, no cross-linking agent, ultraviolet (UV), heating or other exogenous factors are involved, ensuring high biosafety and biocompatibility. After two weeks of 3D culture, millimeter-sized cell spheres are obtained. This work provides an opportunity for the development of short peptide hydrogel bioinks without exogenous factors in 3D printing, tissue engineering, tumor simulant reconstruction and other biomedical fields.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningyuan Man
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Madakannu I, Patil I, Kakade B, Datta KKR. Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1020-1029. [PMID: 36247528 PMCID: PMC9531560 DOI: 10.3762/bjnano.13.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Silver-based electrocatalysts as promising substitutes for platinum materials for cathodic oxygen electroreduction have been extensively researched. Electrocatalytic enhancement of the Ag nanoarchitectonics can be obtained via support structures and amalgamating Ag with one or two additional metals. The work presented here deals with a facile microwave-assisted synthesis to produce bimetallic Ag-Cu and Ag-Co (1:1) oxide nanoparticles (NPs) and trimetallic AgCuCo (0.6:1.5:1.5, 2:1:1, and 6:1:1) oxide NPs supported on a reduced graphene oxide (rGO) matrix. Morphology, composition, and functional groups were methodically analysed using various microscopic and spectroscopic techniques. The as-prepared electrocatalysts were employed as cathode substrates for the oxygen reduction reaction (ORR) in alkaline medium. Varying the Ag fraction in copper cobalt oxide has a significant influence on the ORR activity. At a ratio of 2:1:1, AgCuCo oxide NPs on rGO displayed the best values for onset potential, half-wave potential, and limiting current density (J k) of 0.94 V vs RHE, 0.78 V, and 3.6 mA·cm-2, respectively, with an electrochemical active surface area of 66.92 m2·g-1 and a mass activity of 40.55 mA·mg-1. The optimum electrocatalyst shows considerable electrochemical stability over 10,000 cycles in 0.1 M KOH solution.
Collapse
Affiliation(s)
- Iyyappan Madakannu
- Functional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| | - Indrajit Patil
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| | - Bhalchandra Kakade
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| | - Kasibhatta Kumara Ramanatha Datta
- Functional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| |
Collapse
|
5
|
Lin Z, Yang Z, Huang J. Hierarchical Bi 2WO 6/TiO 2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:745-762. [PMID: 35975179 PMCID: PMC9359189 DOI: 10.3762/bjnano.13.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 06/13/2023]
Abstract
A series of Bi2WO6/TiO2-nanotube (Bi2WO6/TiO2-NT) heterostructured composites were prepared by utilizing natural cellulose (e.g., laboratory filter paper) as the structural template. The obtained nanoarchitectonics, namely Bi2WO6/TiO2-NT nanocomposites, displayed three-dimensionally interwoven structures which replicated the initial cellulose template. The composite Bi2WO6/TiO2-NT nanotubes were formed by TiO2 nanotubes that uniformly anchored with Bi2WO6 nanoparticles of various densities on the surface. The composites exhibited improved photocatalytic activities toward the reduction of Cr(VI) and degradation of rhodamine B under visible light (λ > 420 nm), which were attributed to the uniform anchoring of Bi2WO6 nanoparticles on TiO2 nanotubes, as well as strong mutual effects and well-proportioned formation of heterostructures in between the Bi2WO6 and TiO2 phases. These improvements arose from the cellulose-derived unique structures, leading to an enhanced absorption of visible light together with an accelerated separation and transfer of the photogenerated electron-hole pairs of the nanocomposites, which resulted in increased effective amounts of photogenerated carriers for the photocatalytic reactions. It was demonstrated that the photoinduced electrons dominated the photocatalytic reduction of Cr(VI), while hydroxyl radicals and reactive holes contributed to the photocatalytic degradation of rhodamine B.
Collapse
Affiliation(s)
- Zehao Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Shenzhen Middle School, Shenzhen, Guangdong 518001, P. R. China
| | - Zhan Yang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jianguo Huang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
6
|
Malik S, Kostakis GE. Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:455-461. [PMID: 35655941 PMCID: PMC9127243 DOI: 10.3762/bjnano.13.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Glassy carbon, in general, is made by the pyrolysis of polymeric materials and has been the subject of research for at least fifty years. However, as understanding its microstructure is far from straightforward, it continues to be an area of active research. Glassy carbon adopts different allotropes depending on the hybridizations of the C-C bond, that is, sp, sp2, or sp3 . Furthermore, a variety of short-range ordering effects can interact with each other and this, along with the effects of microporosity, grain boundaries, and defects, render this a fascinating material. Following the nanoarchitectonics concept of bottom-up creation of functional materials, we use methane rather than a polymer to form glassy carbon. Here we show that tubular glassy carbon microneedles with fullerene-like tips form when methane undergoes pyrolysis on a curved alumina surface. X-ray diffraction of these glassy carbon tubules shows long-range order with a d-spacing of 4.89 Å, which is indicative of glassy carbon. Raman spectroscopy shows the material to be graphitic in nature, and SEM shows the fullerene-like structure of the material. This work provides new insights into the structure of glassy carbons relevant to the application of glassy carbons as a biomaterial, for example, as a new form of carbon-based microneedles. Since metallic needles can introduce toxic/allergenic species into susceptible subjects, this alternative carbon-based microneedle form has great potential as a replacement biomedical material for metallic needles in the field of neural engineering and as acupuncture needles.
Collapse
Affiliation(s)
- Sharali Malik
- Institute of Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - George E Kostakis
- Chemistry Department, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| |
Collapse
|
7
|
Moorthy H, Datta LP, Govindaraju T. Molecular Architectonics-guided Design of Biomaterials. Chem Asian J 2021; 16:423-442. [PMID: 33449445 DOI: 10.1002/asia.202001445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Indexed: 11/09/2022]
Abstract
The quest for mastering the controlled engineering of dynamic molecular assemblies is the basis of molecular architectonics. The rational use of noncovalent interactions to programme the molecular assemblies allow the construction of diverse molecular and material architectures with novel functional properties and applications. Understanding and controlling the assembly of molecular systems are daunting tasks owing to the complex factors that govern at the molecular level. Molecular architectures depend on the design of functional molecular modules through the judicious selection of functional core and auxiliary units to guide the precise molecular assembly and co-assembly patterns. Biomolecules with built-in information for molecular recognition are the ultimate examples of evolutionary guided molecular recognition systems that define the structure and functions of living organisms. Explicit use of biomolecules as auxiliary units to command the molecular assemblies of functional molecules is an intriguing exercise in the scheme of molecular architectonics. In this minireview, we discuss the implementation of the principles of molecular architectonics for the development of novel biomaterials with functional properties and applications ranging from sensing, drug delivery to neurogeneration and tissue engineering. We present the molecular designs pioneered by our group owing to the requirement and scope of the article while acknowledging the designs pursued by several research groups that befit the concept.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
8
|
Kumari N, Kumar A, Krishnan V. Ultrathin Au–Ag Heterojunctions on Nanoarchitectonics Based Biomimetic Substrates for Dip Catalysis. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01902-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|