1
|
Uddin SMZ, Gupta E, Rahim M, Wang Z, Du Y, Ullah K, Arnold CB, Mirotznik M, Gu T. Micro-dispenser-based optical packaging scheme for grating couplers. OPTICS LETTERS 2023; 48:2162-2165. [PMID: 37058667 DOI: 10.1364/ol.486595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Due to their sub-millimeter spatial resolution, ink-based additive manufacturing tools are typically considered less attractive than nanophotonics. Among these tools, precision micro-dispensers with sub-nanoliter volumetric control offer the finest spatial resolution: down to 50 µm. Within a sub-second, a flawless, surface-tension-driven spherical shape of the dielectric dot is formed as a self-assembled µlens. When combined with dispersive nanophotonic structures defined on a silicon-on-insulator substrate, we show that the dispensed dielectric µlenses [numerical aperture (NA) = 0.36] engineer the angular field distribution of vertically coupled nanostructures. The µlenses improve the angular tolerance for the input and reduces the angular spread of the output beam in the far field. The micro-dispenser is fast, scalable, and back-end-of-line compatible, allowing geometric-offset-caused efficiency reductions and center wavelength drift to be easily fixed. The design concept is experimentally verified by comparing several exemplary grating couplers with and without a µlens on top. A difference of less than 1 dB between incident angles of 7° and 14° is observed in the index-matched µlens, while the reference grating coupler shows around 5 dB contrast.
Collapse
|
2
|
Xu X, Thomson DJ, Yan J. Optimisation and scaling effect of dual-waveguide optical trapping in the SOI platform. OPTICS EXPRESS 2020; 28:33285-33297. [PMID: 33114996 DOI: 10.1364/oe.403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Optical trapping has potential applications in biological manipulation, particle trapping, Raman spectroscopy, and quantum optomechanics. Among the various optical trapping schemes, on-chip dual-waveguide traps combine benefits of stable trapping and mass production. However, no systematic research has been conducted to optimise on-chip dual-waveguide traps so that the trapping capability is maximised. Here, a numerical simulation of an on-chip silicon on insulator (SOI) dual-waveguide optical trap based on Lumerical FDTD Solutions is carried out to optimise the on-chip dual-waveguide trap. It was found that the waveguide thickness is a crucial parameter when designing a dual-waveguide trap, and its optical trapping capability largely depends on the distance between the two waveguides. We show that the optimal waveguide thickness to achieve the maximum trapping capability generally increases with the gap distance, accompanied by a periodic feature due to the interference and the resonant effects within the gap. This optimal waveguide thickness and gap distance are analysed to have clear scaling effects over the input optical wavelength, which paves the way for the design and optimisation of dual-waveguide traps for various applications.
Collapse
|
3
|
Rikkert LG, Beekman P, Caro J, Coumans FAW, Enciso-Martinez A, Jenster G, Le Gac S, Lee W, van Leeuwen TG, Loozen GB, Nanou A, Nieuwland R, Offerhaus HL, Otto C, Pegtel DM, Piontek MC, van der Pol E, de Rond L, Roos WH, Schasfoort RBM, Wauben MHM, Zuilhof H, Terstappen LWMM. Cancer-ID: Toward Identification of Cancer by Tumor-Derived Extracellular Vesicles in Blood. Front Oncol 2020; 10:608. [PMID: 32582525 PMCID: PMC7287034 DOI: 10.3389/fonc.2020.00608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) have great potential as biomarkers since their composition and concentration in biofluids are disease state dependent and their cargo can contain disease-related information. Large tumor-derived EVs (tdEVs, >1 μm) in blood from cancer patients are associated with poor outcome, and changes in their number can be used to monitor therapy effectiveness. Whereas, small tumor-derived EVs (<1 μm) are likely to outnumber their larger counterparts, thereby offering better statistical significance, identification and quantification of small tdEVs are more challenging. In the blood of cancer patients, a subpopulation of EVs originate from tumor cells, but these EVs are outnumbered by non-EV particles and EVs from other origin. In the Dutch NWO Perspectief Cancer-ID program, we developed and evaluated detection and characterization techniques to distinguish EVs from non-EV particles and other EVs. Despite low signal amplitudes, we identified characteristics of these small tdEVs that may enable the enumeration of small tdEVs and extract relevant information. The insights obtained from Cancer-ID can help to explore the full potential of tdEVs in the clinic.
Collapse
Affiliation(s)
- L G Rikkert
- Department of Medical Cell Biophysics, University of Twente, Enschede, Netherlands.,Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - P Beekman
- Department of Medical Cell Biophysics, University of Twente, Enschede, Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands.,Applied Microfluidics for Bioengineering Research, University of Twente, Enschede, Netherlands
| | - J Caro
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - F A W Coumans
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - A Enciso-Martinez
- Department of Medical Cell Biophysics, University of Twente, Enschede, Netherlands
| | - G Jenster
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - S Le Gac
- Applied Microfluidics for Bioengineering Research, University of Twente, Enschede, Netherlands
| | - W Lee
- Optical Sciences Group, Department of Science and Technology, University of Twente, Enschede, Netherlands
| | - T G van Leeuwen
- Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - G B Loozen
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - A Nanou
- Department of Medical Cell Biophysics, University of Twente, Enschede, Netherlands
| | - R Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - H L Offerhaus
- Optical Sciences Group, Department of Science and Technology, University of Twente, Enschede, Netherlands
| | - C Otto
- Department of Medical Cell Biophysics, University of Twente, Enschede, Netherlands
| | - D M Pegtel
- Department of Pathology, Amsterdam UMC, VU University Amsterdam, Amsterdam, Netherlands
| | - M C Piontek
- Molecular Biophysics, Zernike Institute, University of Groningen, Groningen, Netherlands
| | - E van der Pol
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - L de Rond
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - W H Roos
- Molecular Biophysics, Zernike Institute, University of Groningen, Groningen, Netherlands
| | - R B M Schasfoort
- Department of Medical Cell Biophysics, University of Twente, Enschede, Netherlands
| | - M H M Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - H Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, China
| | - L W M M Terstappen
- Department of Medical Cell Biophysics, University of Twente, Enschede, Netherlands
| |
Collapse
|