An Y, Fu T, Guo C, Pei J, Ouyang Z. Two Individual Super-Bound State Modes within Band Gap with Ultra-High
Q Factor for Potential Sensing Applications in the Terahertz Wave Band.
SENSORS (BASEL, SWITZERLAND) 2023;
23:6737. [PMID:
37571521 PMCID:
PMC10422254 DOI:
10.3390/s23156737]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Bound states in the continuum (BICs) garnered significant research interest in the field of sensors due to their exceptionally high-quality factors. However, the wide-band continuum in BICs are noise to the bound states, and it is difficult to control and filter. Therefore, we constructed a top-bottom symmetric cavity containing three high permittivity rectangular columns. The cavity supports a symmetry-protected (SP) superbound state (SBS) mode and an accidental (AC) SBS mode within the bandgap. With a period size of 5 × 15, the bandgap effectively filters out the continuum, allowing only the bound states to exist. This configuration enabled us to achieve a high signal-to-noise ratio and a wide free-spectral-range. The AC SBS and the SP SBS can be converted into quasi-SBS by adjusting different parameters. Consequently, the cavity can function as a single-band sensor or a dual-band sensor. The achieved bulk sensitivity was 38 µm/RIU in terahertz wave band, and a record-high FOM reached 2.8 × 108 RIU-1. The effect of fabrication error on the performance for sensor application was also discussed, showing that the application was feasible. Moreover, for experimental realization, a 3D schematic was presented. These achievements pave the way for compact, high-sensitivity biosensing, multi-wavelength sensing, and other promising applications.
Collapse