1
|
Costa-Leonardo AM, Janei V, Bacci LMG, Silva IBD. Morphology of the head-associated exocrine glands in Cornitermes cumulans with the description of a novel gland for the worker caste. Tissue Cell 2024; 93:102688. [PMID: 39705871 DOI: 10.1016/j.tice.2024.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Exocrine glands are important mediators of communication in eusocial insects and the description of novel glands reflects the complex context in which these animals live. Here we revisit the head-associated glands in workers of the Neotropical termite Cornitermes cumulans through histological analysis and describe a novel gland for this caste, the intramandibular glands. This structure is located underneath the cuticle of the dorsodistal part of each mandible. The glands showed an epithelial arrangement, but the cytological morphology is complex, comprising classes I and III of secretory cells. The present data highlight the importance of the intramandibular glands in the worker caste and demonstrate different morphology of these glands in Isoptera, probably related to the specialized function of the castes. Features of active glandular activity were also observed in the mandibular, labral, and salivary glands of these workers. Despite the intramandibular glands being also found in workers of other social insects, their occurrence in termites was restricted to the soldier caste of Machadotermes. Even so, their cytological structure differs from those of C. cumulans workers. The likely function of the worker intramandibular glands is discussed considering the separate-nest life type present by C. cumulans and tasks performed by workers. The chemical nature of the secretion and the occurrence of the glands in other termite taxa still require further investigation.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil.
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Lorena Maria Gardesani Bacci
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Iago Bueno da Silva
- Laboratório de Comportamento e Ecologia de Insetos Sociais, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Lopez VM, Polidori C, Ferreira RG. Hymenoptera and biomimetic surfaces: insights and innovations. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1333-1352. [PMID: 39530025 PMCID: PMC11552452 DOI: 10.3762/bjnano.15.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The extraordinary adaptations that Hymenoptera (sawflies, wasps, ants, and bees) exhibit on their body surfaces has long intrigued biologists. These adaptations, which enabled the immense success of these insects in a wide range of environments and habitats, include an amazing array of specialized structures facilitating attachment, penetration of substrates, production of sound, perception of volatiles, and delivery of venoms, among others. These morphological features offer valuable insights for biomimetic and bioinspired technological advancements. Here, we explore the biomimetic potential of hymenopteran body surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative materials and devices that replicate the efficiency and functionality of insect body structures, driving progress in medical technology, robotics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | |
Collapse
|
3
|
Sundar PS, Chowdhury C, Kamarthi S. Analysis of Pollination Process between Flowers and Honeybees to Derive Insights for the Design of Microrobots. Biomimetics (Basel) 2024; 9:235. [PMID: 38667246 PMCID: PMC11048599 DOI: 10.3390/biomimetics9040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pollination is a crucial ecological process with far-reaching impacts on natural and agricultural systems. Approximately 85% of flowering plants depend on animal pollinators for successful reproduction. Over 75% of global food crops rely on pollinators, making them indispensable for sustaining human populations. Wind, water, insects, birds, bats, mammals, amphibians, and mollusks accomplish the pollination process. The design features of flowers and pollinators in angiosperms make the pollination process functionally effective and efficient. In this paper, we analyze the design aspects of the honeybee-enabled flower pollination process using the axiomatic design methodology. We tabulate functional requirements (FRs) of flower and honeybee components and map them onto nature-chosen design parameters (DPs). We apply the "independence axiom" of the axiomatic design methodology to identify couplings and to evaluate if the features of a flower and a honeybee form a good design (i.e., uncoupled design) or an underperforming design (i.e., coupled design). We also apply the axiomatic design methodology's "information axiom" to assess the pollination process's robustness and reliability. Through this exploration, we observed that the pollination process is not only a good design but also a robust design. This approach to assessing whether nature's processes are good or bad designs can be valuable for biomimicry studies. This approach can also inform design considerations for bio-inspired innovations such as microrobots.
Collapse
Affiliation(s)
- Pratap Sriram Sundar
- Munjal Institute for Global Manufacturing and Punj Lloyd Institute of Infrastructure Management, Indian School of Business, Mohali 140306, India;
| | - Chandan Chowdhury
- Munjal Institute for Global Manufacturing and Punj Lloyd Institute of Infrastructure Management, Indian School of Business, Gachibowli, Hyderabad 500111, India;
| | - Sagar Kamarthi
- College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Saccardi L, Schiebl J, Balluff F, Christ U, Gorb SN, Kovalev A, Schwarz O. Anti-Adhesive Surfaces Inspired by Bee Mandible Surfaces. Biomimetics (Basel) 2023; 8:579. [PMID: 38132517 PMCID: PMC10742288 DOI: 10.3390/biomimetics8080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Propolis, a naturally sticky substance used by bees to secure their hives and protect the colony from pathogens, presents a fascinating challenge. Despite its adhesive nature, honeybees adeptly handle propolis with their mandibles. Previous research has shown a combination of an anti-adhesive fluid layer and scale-like microstructures on the inner surface of bee mandibles. Our aim was to deepen our understanding of how surface energy and microstructure influence the reduction in adhesion for challenging substances like propolis. To achieve this, we devised surfaces inspired by the intricate microstructure of bee mandibles, employing diverse techniques including roughening steel surfaces, creating lacquer structures using Bénard cells, and moulding resin surfaces with hexagonal patterns. These approaches generated patterns that mimicked the bee mandible structure to varying degrees. Subsequently, we assessed the adhesion of propolis on these bioinspired structured substrates. Our findings revealed that on rough steel and resin surfaces structured with hexagonal dimples, propolis adhesion was significantly reduced by over 40% compared to unstructured control surfaces. However, in the case of the lacquer surface patterned with Bénard cells, we did not observe a significant reduction in adhesion.
Collapse
Affiliation(s)
- Leonie Saccardi
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Jonas Schiebl
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Franz Balluff
- Department of Applied Coating Technology, Fraunhofer-Institute for Manufacturing Engineering and Automation (IPA), 70569 Stuttgart, Germany
| | - Ulrich Christ
- Department of Applied Coating Technology, Fraunhofer-Institute for Manufacturing Engineering and Automation (IPA), 70569 Stuttgart, Germany
| | - Stanislav N. Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Alexander Kovalev
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Oliver Schwarz
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Heghedűş-Mîndru RC, Glevitzky M, Heghedűş-Mîndru G, Dumitrel GA, Popa M, Popa DM, Radulov I, Vică ML. Applications of Romanian Propolis in Phyto-Inhibitory Activity and Antimicrobial Protection: A Comparative Study. Antibiotics (Basel) 2023; 12:1682. [PMID: 38136716 PMCID: PMC10741215 DOI: 10.3390/antibiotics12121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Propolis use in medicine, pharmaceutical, cosmetic, and food industries is well known. This study aimed to investigate propolis' phyto-inhibitory and antimicrobial potential. Nine propolis samples obtained from distinct Romanian regions and characterized in terms of physical-chemical parameters, phenols and flavonoid contents, and antioxidant properties were prepared as dry propolis and aqueous extracts. The phyto-inhibitory effect was comparatively tested on different cereals: hexaploid bread wheat (Triticum aestivum), maize (Zea mays L.), oats (Avena sativa L.), and barley (Hordeum vulgare L.), while their in vitro antimicrobial activity was evaluated against bacterial and fungal strains specific to cereals: Bacillus subtilis, B. cereus, Proteus mirabilis, Fusarium oxysporum, Penicillium chrysogenum, and Aspergillus niger. All propolis samples showed a phyto-inhibitory effect on the cereals, the most pronounced being corn and oats. Propolis powder samples displayed a lower phyto-inhibitory activity than propolis extracts. Also, all tested products showed inhibitory efficacy against both bacteria and fungi. Furthermore, principal component analysis showed differences between the samples' phyto-inhibitory and antimicrobial properties depending on the geographical origin. Positive correlations were found between the polyphenols, flavonoid content, and antioxidant activity, respectively. These data support propolis' phyto-pharmaceutical potential related to its use in plant crop management as an alternative in ecological agriculture.
Collapse
Affiliation(s)
- Ramona Cristina Heghedűş-Mîndru
- Faculty of Food Engineering, University of Life Science “King Mihai I”, 300645 Timișoara, Romania; (R.C.H.-M.); (G.H.-M.); (I.R.)
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania;
| | - Gabriel Heghedűş-Mîndru
- Faculty of Food Engineering, University of Life Science “King Mihai I”, 300645 Timișoara, Romania; (R.C.H.-M.); (G.H.-M.); (I.R.)
| | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania;
| | - Maria Popa
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania;
| | - Doriana Maria Popa
- Clinical Emergency Hospital for Children Cluj Napoca, 400398 Cluj-Napoca, Romania;
| | - Isidora Radulov
- Faculty of Food Engineering, University of Life Science “King Mihai I”, 300645 Timișoara, Romania; (R.C.H.-M.); (G.H.-M.); (I.R.)
| | - Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Mail M, Koch K, Speck T, Megill WM, Gorb SN. Biomimetics on the micro- and nanoscale - The 25th anniversary of the lotus effect. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:850-856. [PMID: 37560348 PMCID: PMC10407784 DOI: 10.3762/bjnano.14.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Affiliation(s)
- Matthias Mail
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Kerstin Koch
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, D-47533 Kleve, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, D-79104 Freiburg, Germany
| | - William M Megill
- Centre for Biomimetic and Natural Technologies, Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, D-47533 Kleve, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| |
Collapse
|