Dzedzickis A, Rožėnė J, Bučinskas V, Viržonis D, Morkvėnaitė-Vilkončienė I. Characteristics and Functionality of Cantilevers and Scanners in Atomic Force Microscopy.
MATERIALS (BASEL, SWITZERLAND) 2023;
16:6379. [PMID:
37834515 PMCID:
PMC10573440 DOI:
10.3390/ma16196379]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this paper, we provide a systematic review of atomic force microscopy (AFM), a fast-developing technique that embraces scanners, controllers, and cantilevers. The main objectives of this review are to analyze the available technical solutions of AFM, including the limitations and problems. The main questions the review addresses are the problems of working in contact, noncontact, and tapping AFM modes. We do not include applications of AFM but rather the design of different parts and operation modes. Since the main part of AFM is the cantilever, we focused on its operation and design. Information from scientific articles published over the last 5 years is provided. Many articles in this period disclose minor amendments in the mechanical system but suggest innovative AFM control and imaging algorithms. Some of them are based on artificial intelligence. During operation, control of cantilever dynamic characteristics can be achieved by magnetic field, electrostatic, or aerodynamic forces.
Collapse