1
|
Bogatyrenko SI, Kryshtal AP, Kruk A. Effect of Size on the Formation of Solid Solutions in Ag-Cu Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:2569-2580. [PMID: 36818666 PMCID: PMC9931174 DOI: 10.1021/acs.jpcc.2c07132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Modern technologies stimulate the quest for multicomponent nanosized materials with improved properties, which are ultimately defined by the atomic arrangement and interphase interactions in the nanomaterial. Here, we present the results of the experimental study of the formation of solid solutions in Ag-Cu nanoparticles in a wide size and temperature range using in situ TEM techniques. The Ag-Cu nanoparticles with a eutectic ratio of components were formed on an amorphous carbon film by the physical vapor deposition technique. Electron diffraction, HAADF-STEM imaging, energy-dispersive X-ray spectroscopy, chemical element mapping, and electron energy loss spectral imaging were used for the characterization of mixing patterns and composition of phases in AgCu nanoparticles down to the atomic level. As a result, we constructed the solid-state part of the Ag-Cu phase diagram for nanoparticles with a size down to 5 nm. We found a highly asymmetric behavior of the solvus lines. Thus, the content of Cu in Ag gradually increased with a size reduction and reached the ultimate value for our configuration of 27 wt % Cu at a nanoparticle size below ∼8 nm. At the same time, no Cu-rich solid solution was found in two-phase AgCu nanoparticles, irrespective of the size and temperature. Moreover, a quasi-homogeneous solid solution was revealed in AgCu nanoparticles with a size smaller than 8 nm already at room temperature. A size dependence of the terminal temperature T term, which limits the existence of AgCu alloy nanoparticles in a vacuum, was constructed. Evaporation of the AgCu phase with the composition of 86 wt % Ag was observed at temperatures above T term. We show the crucial role of the mutual solubility of components on the type of atomic mixing pattern in AgCu nanoparticles. A gradual transition from a Janus-like to a homogeneous mixing pattern was observed in Ag-Cu nanoparticles (28 wt % Cu) with a decrease in their size.
Collapse
Affiliation(s)
| | - Aleksandr P. Kryshtal
- AGH
University of Science and Technology, Al. A. Mickiewicza 30, KrakówPL-30 059, Poland
| | - Adam Kruk
- AGH
University of Science and Technology, Al. A. Mickiewicza 30, KrakówPL-30 059, Poland
| |
Collapse
|
2
|
Oshchepkov AG, Simonov PA, Kuznetsov AN, Shermukhamedov SA, Nazmutdinov RR, Kvon RI, Zaikovskii VI, Kardash TY, Fedorova EA, Cherstiouk OV, Bonnefont A, Savinova ER. Bimetallic NiM/C (M = Cu and Mo) Catalysts for the Hydrogen Oxidation Reaction: Deciphering the Role of Unintentional Surface Oxides in the Activity Enhancement. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Alexandr G. Oshchepkov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel A. Simonov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksey N. Kuznetsov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Shokir A. Shermukhamedov
- Kazan National Research Technological University, Kazan 420015, Russia
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Ren I. Kvon
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
| | - Vladimir I. Zaikovskii
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatyana Yu. Kardash
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Olga V. Cherstiouk
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Antoine Bonnefont
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Elena R. Savinova
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, Strasbourg Cedex 67087, France
| |
Collapse
|
3
|
Kim HG, Lee J, Makov G. Phase Diagram of Binary Alloy Nanoparticles under High Pressure. MATERIALS 2021; 14:ma14112929. [PMID: 34072298 PMCID: PMC8199147 DOI: 10.3390/ma14112929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
CALPHAD (CALculation of PHAse Diagram) is a useful tool to construct phase diagrams of various materials under different thermodynamic conditions. Researchers have extended the use of the CALPHAD method to nanophase diagrams and pressure phase diagrams. In this study, the phase diagram of an arbitrary A–B nanoparticle system under pressure was investigated. The effects of the interaction parameter and excess volume were investigated with increasing pressure. The eutectic temperature was found to decrease in most cases, except when the interaction parameter in the liquid was zero and that in the solid was positive, while the excess volume parameter of the liquid was positive. Under these conditions, the eutectic temperature increased with increasing pressure.
Collapse
Affiliation(s)
- Han Gyeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea;
| | - Joonho Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea;
- Correspondence: (J.L.); (G.M.)
| | - Guy Makov
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (J.L.); (G.M.)
| |
Collapse
|
4
|
Taranovskyy A, Tomán JJ, Gajdics BD, Erdélyi Z. 3D phase diagrams and the thermal stability of two-component Janus nanoparticles: effects of size, average composition and temperature. Phys Chem Chem Phys 2021; 23:6116-6127. [PMID: 33683233 DOI: 10.1039/d0cp06695h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Determining binary phase diagrams for nanoparticles proves to be a very difficult task regardless if it is tried either by computer simulations, theoretical considerations or experiments. In this work, using 3D Object Stochastic Kinetic Modelling Framework (3DO-SKMF) computer simulations, we reveal some of the reasons why this is the case. First of all, even the expressions "phase diagram" and "phase composition" are usually not well-defined. We show the two different types of phase diagrams that are rarely distinguished. For phase separating nanoparticles, one diagram shows the equilibrium phase compositions in two-phase state while the other represents if the system is in an alloyed or in a separated state. We calculate both diagrams for the case of binary Janus nanoparticles and show their dependences on size and average composition. The equilibrium compositions of the phases change with both the size and the average composition of the particle. This means that the use of 3D phase diagrams is unavoidable even if the size of the particle is fixed. The careful investigation of the simulation results reveals the essential role that the interfaces play in the behaviour of the system hence in the shape of the phase diagrams. We also point out that the methods used to determine the phase compositions in nanoparticles have a substantial influence on the details of both experimentally and theoretically constructed phase diagrams.
Collapse
Affiliation(s)
- Andriy Taranovskyy
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary.
| | - János J Tomán
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary.
| | - Bence D Gajdics
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary. and GPM, CNRS-UMR 6634, University of Rouen Normandy, 76801, Saint-Etienne Du Rouvray, France and University of Debrecen, Doctoral School of Physics, Hungary
| | - Zoltán Erdélyi
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, H-4002, Debrecen, Hungary.
| |
Collapse
|
5
|
Sun Y, Liu S, Guo X, Huang S. Structural, magnetic and electronic properties of CunNi55−n (n = 0–55) nanoparticles: Combination artificial bee colony algorithm with DFT. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|