1
|
Zveaghintseva M, Stingaci E, Pogrebnoi S, Lupascu L, Barba A, Duca G, Valica V, Uncu L, Kravtsov V, Terteac D, Brinzan A, Macaev F. Resin Acids as Raw Material for the Preparation of Cyclodextrin Complexes Loaded with Dehydroabietitoic Acid and Chromenol Hybrid. CHEMISTRY JOURNAL OF MOLDOVA 2022. [DOI: 10.19261/cjm.2022.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
In this work new methods to obtain complexes from β-cyclodextrin and dehydroabietic acid with chromenol-triazol hybrid with the sizes limits of approximately 0.1-250 μm are reported. Kneading, co-evaporation and co-precipitation for the resolution of racemic 2-tert-butyl-3-(1H-1,2,4-triazol-1-yl)-2H-chromen-2-ol for obtaining micro- and nanoparticles have been optimized. In vitro dissolution studies of the synthesized compounds in phosphate buffer (pH 6.8) showed an improved dissolution rate of chromenol-triazol hybrid in the inclusion complexes compared to the free form. The obtained β-complexes of β-cyclodextrin loaded with dehydroabietitoic acid and chromenol hybrid showed good antibacterial activity with MIC and MBC values ranging from 0.72 to 44.45 μM.
Collapse
Affiliation(s)
- Marina Zveaghintseva
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
| | - Eugenia Stingaci
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
| | - Serghei Pogrebnoi
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
- “Nicolae Testemitanu” State University of Medicine and Pharmacy,165, Stefan cel Mare blvd., Chisinau MD-2004, Republic of Moldova
| | - Lucian Lupascu
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
| | - Alic Barba
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
| | - Gheorghe Duca
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
| | - Vladimir Valica
- “Nicolae Testemitanu” State University of Medicine and Pharmacy,165, Stefan cel Mare blvd., Chisinau MD-2004, Republic of Moldova
| | - Livia Uncu
- “Nicolae Testemitanu” State University of Medicine and Pharmacy,165, Stefan cel Mare blvd., Chisinau MD-2004, Republic of Moldova
| | - Victor Kravtsov
- Institute of Applied Physics, 5, Academiei str., Chisinau MD-2028, Republic of Moldova
| | - Dumitru Terteac
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
- Practical Scientific Institute of Horticulture and Food Technology, 59, Vierul str., Chisinau MD-2070, Republic of Moldova
| | - Alexandr Brinzan
- Institute of Biology Bucharest, Romanian Academy of Science, 296, Splaiul Independentei str.,Bucuresti 060031, Romania
| | - Fliur Macaev
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
- “Nicolae Testemitanu” State University of Medicine and Pharmacy,165, Stefan cel Mare blvd., Chisinau MD-2004, Republic of Moldova
| |
Collapse
|
2
|
Yang Z, Lou C, Wang X, Wang C, Shi Z, Niu N. Preparation, characterization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-β1 siRNA for improving spinal tuberculosis therapy. BMC Infect Dis 2022; 22:824. [PMID: 36348467 PMCID: PMC9644586 DOI: 10.1186/s12879-022-07791-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background Tuberculosis (TB) represents a bacterial infection affecting many individuals each year and potentially leading to death. Overexpression of transforming growth factor (TGF)-β1 has a primary immunomodulatory function in human tuberculosis. This work aimed to develop nanoliposomes to facilitate the delivery of anti-tubercular products to THP-1-derived human macrophages as Mycobacterium host cells and to evaluate drug efficiencies as well as the effects of a TGF-β1-specific short interfering RNA (siRNA) delivery system employing nanoliposomes.
Methods In the current study, siTGF-β1 nanoliposomes loaded with the anti-TB drugs HRZ (isoniazid, rifampicin, and pyrazinamide) were prepared and characterized in vitro, determining the size, zeta potential, morphology, drug encapsulation efficiency (EE), cytotoxicity, and gene silencing efficiency of TGF-β1 siRNA.
Results HRZ/siTGF-β1 nanoliposomes appeared as smooth spheres showing the size and positive zeta potential of 168.135 ± 0.5444 nm and + 4.03 ± 1.32 mV, respectively. Drug EEs were 90%, 88%, and 37% for INH, RIF, and PZA, respectively. Meanwhile, the nanoliposomes were weakly cytotoxic towards human macrophages as assessed by the MTT assay. Nanoliposomal siTGF-β1 could significantly downregulate TGF-β1 in THP-1-derived human macrophages in vitro. Conclusion These findings suggested that HRZ-loaded nanoliposomes with siTGF-β1 have the potential for improving spinal tuberculosis chemotherapy via nano-encapsulation of anti-TB drugs.
Collapse
|
3
|
Balde A, Kim SK, Benjakul S, Nazeer RA. Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review. Int J Biol Macromol 2022; 220:1464-1479. [PMID: 36116588 DOI: 10.1016/j.ijbiomac.2022.09.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Respiratory distress syndrome and pneumothorax are the foremost causes of death as a result of the changing lifestyle and increasing air pollution. Numerous approaches have been studied for the pulmonary delivery of drugs, proteins as well as peptides using meso/nanoparticles, nanocrystals, and liposomes. These nano/microcarrier systems (NMCs) loaded with drug provide better systemic as well as local action. Furthermore, natural polysaccharide-based polymers such as chitosan (CS), alginate (AG), hyaluronic acid, dextran, and cellulose are highly used for the preparation of nanoparticles and delivery of the drug into the pulmonary tract due to their advantageous properties such as low toxicity, high hydrophobicity, supplementary mucociliary clearance, mucoadhesivity, and biological efficacy. These properties ease the delivery of drugs onto the targeted site. Herein, recent advances in the natural polymer-derived NMCs have been reviewed for their transport and mechanism of action into the bronchiolar region as well as the respiratory region. Various physicochemical properties such as surface charge, size of nanocarrier system, surface modifications, and toxicological effects of these nanocarriers in vitro and in vivo are elucidated as well. Furthermore, challenges faced for the preparation of a model NMCs for pulmonary drug delivery are also discoursed.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan-si, Gyeonggi-do 11558, South Korea
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
4
|
Ma R, Zhang J, Chen Z, Ma H, Liu X, Liang S, Wu P, Ge Z. Treatment of spinal tuberculosis in rabbits using bovine serum albumin nanoparticles loaded with isoniazid and rifampicin. Neurol Res 2021; 44:268-274. [PMID: 34581255 DOI: 10.1080/01616412.2021.1979749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate the clinical efficacy of bovine serum albumin nanoparticles loaded with isoniazid and rifampicin (INH-RFP-BSA-NPs) in the treatment of spinal tuberculosis in rabbits. METHODS 35 spinal tuberculosis rabbit models were grouped into three groups, including 14 in group A and group B respectively and 7 in group C.All rabbits in group A were treated by INH-RFP-BSA-NPs's injection and in group B were treated with classic dosage form of INH and RFP, while in group C normal saline was given as the blank control. After intervention, the body weighing and CT scan, as well as concentration's measurement of INH and RFP in blood and tissues, were performed in all rabbits at the time of the 6thweek and 12th week, respectively. RESULTS In group A, rabbits' weight increased by 0.44 kg and 0.27 kg within 6 weeks and 12 weeks' treatment respectively. The bactericidal concentrations of 1.64 µg•g-1 for INH and 21.36 µg•g-1 for RFP were measured in focus vertebral body 6 weeks post-injection and six weeks later the concentrations of INH and RFP in vertebral body still maintained at the level of 1.96 µg•g-1 and 22.35 µg•g-1respectively. After 12 weeks therapy, CT-scanned showed all the necrotic tissue was replaced by normal bone tissue. In group B, all rabbits had no significant increment of body weight and 4 rabbits had paralysis of hind leg. The concentrations of INH and RFP in vertebral body and focus were much lower than group A. CT-scanned showed the focus vertebral body was only partially repaired after 12 weeks' therapy. CONCLUSION The INH-RFP-BSA-NPs has the characteristics of sustained release in vivo and target biodistribution in focus vertebral body. Its therapeutic effect in rabbit spinal tuberculosis is much better than common INH and RFP.
Collapse
Affiliation(s)
- Rong Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jianqun Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhen Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - He Ma
- Department of Orthopaedics, Shenzhen Baoan People's Hospital, Shenzhen, China
| | - Xiaoyin Liu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Simin Liang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Wu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhaohui Ge
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm 2020; 579:119181. [PMID: 32112928 DOI: 10.1016/j.ijpharm.2020.119181] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Complexation with cyclodextrins (CDs) has been widely and successfully used in pharmaceutical field, mainly for enhancing solubility, stability and bioavailability of a variety of drugs. However, some important drawbacks, including rapid removal from the bloodstream after in vivo administration, or possible replacement, in biological media, of the entrapped drug moieties by other molecules with higher affinity for the CD cavity, can limit the CDs effectiveness as drug carriers. This review is focused on combined strategies simultaneously exploiting CD complexation, and loading of the complexed drug into various colloidal carriers (liposomes, niosomes, polymeric nanoparticles, lipid nanoparticles, nanoemulsions, micelles) which have been investigated as a possible means for circumventing the problems associated with both such carriers, when used separately, and join their relative benefits in a unique delivery system. Several examples of applications have been reported, to illustrate the possible advantages achievable by such a dual strategy, depending on the CD-nanocarrier combination, and mainly resulting in enhanced performance of the delivery system and improved biopharmaceutical properties and therapeutic efficacy of drugs. The major problems and/or drawbacks found in the development of such systems, as well as the (rare) case of failures in achieving the expected improvements have also been highlighted.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, Florence University, via Schiff 6, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Moreno A, Jordana A, Grillo R, Fraceto LF, Jaime C. A study on the molecular existing interactions in nanoherbicides: A chitooligosaccharide/tripolyphosphate loaded with paraquat case. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Zhang Y, Wang J, Ma Y, Niu X, Liu J, Gao L, Zhai X, Chu K, Han B, Yang L, Wang J. Preparation and biocompatibility of demineralized bone matrix/sodium alginate putty. Cell Tissue Bank 2017; 18:205-216. [DOI: 10.1007/s10561-017-9627-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|
8
|
Sidorenko AS. Physics, chemistry and biology of functional nanostructures III. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:590-591. [PMID: 28382248 PMCID: PMC5355908 DOI: 10.3762/bjnano.8.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/20/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Anatolie S Sidorenko
- D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev, Moldova
| |
Collapse
|
9
|
Leclercq L. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein J Org Chem 2016; 12:2644-2662. [PMID: 28144335 PMCID: PMC5238526 DOI: 10.3762/bjoc.12.261] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/25/2016] [Indexed: 11/23/2022] Open
Abstract
In the field of host-guest chemistry, some of the most widely used hosts are probably cyclodextrins (CDs). As CDs are able to increase the water solubility of numerous drugs by inclusion into their hydrophobic cavity, they have been widespread used to develop numerous pharmaceutical formulations. Nevertheless, CDs are also able to interact with endogenous substances that originate from an organism, tissue or cell. These interactions can be useful for a vast array of topics including cholesterol manipulation, treatment of Alzheimer's disease, control of pathogens, etc. In addition, the use of natural CDs offers the great advantage of avoiding or reducing the use of common petroleum-sourced drugs. In this paper, the general features and applications of CDs have been reviewed as well as their interactions with isolated biomolecules leading to the formation of inclusion or exclusion complexes. Finally, some potential medical applications are highlighted throughout several examples.
Collapse
Affiliation(s)
- Loïc Leclercq
- Univ. Lille, CNRS, ENSCL, UMR 8181 – UCCS - Equipe CÏSCO, F-59000 Lille, France
| |
Collapse
|