1
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
2
|
Gago L, Quiñonero F, Perazzoli G, Melguizo C, Prados J, Ortiz R, Cabeza L. Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review. Pharmaceutics 2023; 15:1958. [PMID: 37514144 PMCID: PMC10386177 DOI: 10.3390/pharmaceutics15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased in recent years. Current treatments present numerous challenges, including drug resistance, non-specificity, and severe side effects, needing the exploration of new therapeutic strategies. One promising avenue is the use of magnetic nanoparticles, which have gained considerable interest due to their ability to generate heat in tumor regions upon the application of an external alternating magnetic field, a process known as hyperthermia. This review conducted a systematic search of in vitro and in vivo studies published in the last decade that employ hyperthermia therapy mediated by magnetic nanoparticles for treating gastrointestinal cancers. After applying various inclusion and exclusion criteria (studies in the last 10 years where hyperthermia using alternative magnetic field is applied), a total of 40 articles were analyzed. The results revealed that iron oxide is the preferred material for magnetism generation in the nanoparticles, and colorectal cancer is the most studied gastrointestinal cancer. Interestingly, novel therapies employing nanoparticles loaded with chemotherapeutic drugs in combination with magnetic hyperthermia demonstrated an excellent antitumor effect. In conclusion, hyperthermia treatments mediated by magnetic nanoparticles appear to be an effective approach for the treatment of gastrointestinal cancers, offering advantages over traditional therapies.
Collapse
Affiliation(s)
- Lidia Gago
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
3
|
Farzanegan Z, Tahmasbi M. Evaluating the applications and effectiveness of magnetic nanoparticle-based hyperthermia for cancer treatment: A systematic review. Appl Radiat Isot 2023; 198:110873. [PMID: 37257266 DOI: 10.1016/j.apradiso.2023.110873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Magnetic nanoparticle-based hyperthermia as a new cancer treatment technology has been applied for some kinds of tumors. To review the different applications and effectiveness of this new cancer treatment technique, PubMed, Science Direct, Web of Science, and Google Scholar databases were explored up to November 2022, using the following keywords combined in different ways: "Magnetic Nanoparticles Based Hyperthermia", "Magnetic Nanoparticles" AND "Hyperthermia" AND "Cancer". The obtained results were screened for the title and abstract and the relevant papers were reviewed for further details. Finally, 24 papers were included in the study. These papers have evaluated the application of magnetic nanoparticle-based hyperthermia for treating different cancers including breast, liver, prostate, pancreas, colon, brain, lung, and stem cell. Various nanoparticles including Iron Oxide (Fe2O3, Fe3O4), Dextran Spermine, Iron Chloride, Magnetic nanoparticles conjugated with Liposomes (MCLs), and Variable Molecular Weight Nanoparticles (VMWNPs) were used in different reviewed studies. The results of reviewed studies revealed that the nanoparticle-based hyperthermia technique as a new progressive modality can significantly improve treatment outcomes for some special cancers. Increasing life expectancy by up to 30% using Iron Oxide magnetic nanoparticle-based hyperthermia for pancreatic cancer and increasing tumor ablation by about 33% for other cancers were reported in reviewed articles. However, further studies are required to extend this new treatment technique to other cancers and for providing more accurate information on nanoparticle-based hyperthermia's effectiveness as a complementary technique in cancer treatment.
Collapse
Affiliation(s)
- Zahra Farzanegan
- Medical Physics and Radiotherapy Department, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran.
| | - Marziyeh Tahmasbi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Mehak, Thummer RP, Pandey LM. Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells. Biotechnol Genet Eng Rev 2023:1-47. [PMID: 36710396 DOI: 10.1080/02648725.2023.2169370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
Magnetic hyperthermia is emerging as a promising alternative to the currently available cancer treatment modalities. Superparamagnetic iron-oxide nanoparticles (SPIONs) are extensively studied functional nanomaterials for biomedical applications, owing to their tunable physio-chemical properties and magnetic properties. Out of various ferrite classes, spinel and inverse-spinel ferrites are widely used but are affected by particle size distribution, particle shape, particle-particle interaction, geometry, and crystallinity. Notably, their heating ability makes them suitable candidates for heat-mediated cancer cell ablation or hyperthermia therapy. Exposing SPIONs to an externally applied magnetic field of appropriate frequency and intensity causes them to release heat to ablate cancer cells. Majorly, three heating mechanisms are exhibited by magnetic nanomaterials: Nèel relaxation, Brownian relaxation, and hysteresis losses. In SPIONs, Nèel and Brownian relaxations dominate, whereas hysteric losses are negligible. These nanomaterials possess high magnetization values capable of generating heat to ablate cancer cells. Furthermore, surface functionalization of these materials imparts the ability to selectively target cancer cells and deliver cargo to the affected area sparing the normal body cells. The surface of nanoparticles can be functionalized with various physical, chemical, and biological coatings. Moreover, hyperthermia can be applied in combination with other cancer treatment modalities in order to enhance the efficiency of treatment.
Collapse
Affiliation(s)
- Mehak
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
5
|
Talha M, Pathak N, Bhattacharyya S, Lin Y. Bio-nanomaterials and their applications. APPLICATIONS OF MULTIFUNCTIONAL NANOMATERIALS 2023:461-473. [DOI: 10.1016/b978-0-12-820557-0.00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Hedayatnasab Z, Ramazani Saadatabadi A, Shirgahi H, Mozafari M. Heat induction of iron oxide nanoparticles with rational artificial neural network design-based particle swarm optimization for magnetic cancer hyperthermia. MATERIALS RESEARCH BULLETIN 2023; 157:112035. [DOI: 10.1016/j.materresbull.2022.112035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
7
|
Yan X, Xu H, Li J, Chen W, Hu Y. Inverse problem of magneto-acoustic concentration tomography for magnetic nanoparticles with magnetic induction in a saturation magnetization state based on the least squares QR factorization method-trapezoidal method. Med Biol Eng Comput 2022; 60:3295-3309. [PMID: 36171462 DOI: 10.1007/s11517-022-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
In order to improve the imaging quality of magneto-acoustic concentration tomography for magnetic nanoparticles (MNPs) with magnetic induction (MACT-MI) and overcome the boundary singularity, this paper built a matrix model which shows the relationship between the partial derivative distribution of MNP concentration and the ultrasound signals, and focused on proposing a concentration reconstruction method based on the least squares QR factorization (LSQR) method-trapezoidal method. Firstly, simulation models with different shapes were established. Secondly, the magnetic and acoustic field simulation data was substituted into the inverse problem method based on LSQR-trapezoidal method for concentration reconstruction. Finally, the reconstructed images were analyzed and the effect of MNP cluster radius on the reconstruction was investigated. Considering the diffusely asymptotic concentration distribution of MNPs in actual biological tissue environment, an asymptotic concentration model was established and the reconstructed images were analyzed. The simulation results show that under the same conditions, compared with the reconstruction method based on the method of moments (MoM), LSQR-trapezoidal method has clearer image boundaries, more stable imaging results, and faster imaging speed. Compared with the uniform concentration model, LSQR-trapezoidal method is more applicable to the asymptotic concentration model. This study provides a basis for further reconstruction of the accuracy of experimental research.
Collapse
Affiliation(s)
- Xiaoheng Yan
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao Liaoning, 125105, China
| | - Hong Xu
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao Liaoning, 125105, China.
| | - Jun Li
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao Liaoning, 125105, China
| | - Weihua Chen
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao Liaoning, 125105, China
| | - Yu Hu
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao Liaoning, 125105, China
| |
Collapse
|
8
|
Vicentini M, Vassallo M, Ferrero R, Androulakis I, Manzin A. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 223:106975. [PMID: 35792363 DOI: 10.1016/j.cmpb.2022.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Magnetic hyperthermia is an oncological therapy that employs magnetic nanoparticles activated by alternating current (AC) magnetic fields with frequencies between 50 kHz and 1 MHz, to release heat in a diseased tissue and produce a local temperature increase of about 5 °C. To assess the treatment efficacy, in vivo tests on murine models (mice and rats) are typically performed. However, these are often carried out without satisfying the biophysical constraints on the electromagnetic (EM) field exposure, with consequent generation of hot spots and undesirable heating of healthy tissues. Here, we investigate possible adverse eddy current effects, to estimate AC magnetic field parameters (frequency and amplitude) that can potentially guarantee safe animal tests of magnetic hyperthermia. METHODS The analysis is performed through in silico modelling by means of finite element simulation tools, specifically developed to study eddy current effects in computational animal models, during magnetic hyperthermia treatments. The numerical tools enable us to locally evaluate the specific absorption rate (SAR) and the produced temperature increase, under different field exposure conditions. RESULTS The simulation outcomes demonstrate that in mice with weight lower than 30 g the thermal effects induced by AC magnetic fields are very weak, also when slightly overcoming the Hergt-Dutz limit, that is the product of the magnetic field amplitude and frequency should be lower than 5·109 A/(m·s). Conversely, we observe significant temperature increases in 500 g rats, amplified when the field is applied transversally to the body longitudinal axis. A strong mitigation of side-effects can be achieved by introducing water boluses or by applying focused fields. CONCLUSIONS The developed physics-based modelling approach has proved to be a useful predictive tool for the optimization of preclinical tests of magnetic hyperthermia, allowing the identification of proper EM field conditions and the design of setups that guarantee safe levels of field exposure during animal treatments. In such contest, the obtained results can be considered as valid indicators to assess reference levels for animal testing of biomedical techniques that involve EM fields, like magnetic hyperthermia, thus complying with the Directive 2010/63/EU on the protection of animals used for scientific purposes.
Collapse
Affiliation(s)
- Marta Vicentini
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy; Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marta Vassallo
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy; Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Riccardo Ferrero
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Ioannis Androulakis
- Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alessandra Manzin
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy.
| |
Collapse
|
9
|
Herrero de la Parte B, Rodrigo I, Gutiérrez-Basoa J, Iturrizaga Correcher S, Mar Medina C, Echevarría-Uraga JJ, Garcia JA, Plazaola F, García-Alonso I. Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy. Cancers (Basel) 2022; 14:cancers14133084. [PMID: 35804855 PMCID: PMC9265033 DOI: 10.3390/cancers14133084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Magnetic hyperthermia is a promising therapy for the treatment of certain types of tumors. However, it is not clear what the maximum limit of the magnetic field to which the organism can be subjected without severe and/or irreversible pathophysiological consequences is. This study aims to study the alterations at the physiological level that may occur after exposure to different combinations of frequency and intensity of the applied alternating magnetic field. Understanding the response to alternating magnetic field exposure will allow us to apply this type of antitumor treatment in a safer way for the patient, while achieving an optimal therapeutic result. Abstract Background: Lately, major advances in crucial aspects of magnetic hyperthermia (MH) therapy have been made (nanoparticle synthesis, biosafety, etc.). However, there is one key point still lacking improvement: the magnetic field-frequency product (H × f = 4.85 × 108 Am−1s−1) proposed by Atkinson–Brezovich as a limit for MH therapies. Herein, we analyze both local and systemic physiological effects of overpassing this limit. Methods: Different combinations of field frequency and intensity exceeding the Atkinson–Brezovich limit (591–920 kHz, and 10.3–18 kA/m) have been applied for 21 min to WAG/RijHsd male rats, randomly distributed to groups of 12 animals; half of them were sacrificed after 12 h, and the others 10 days later. Biochemical serum analyses were performed to assess the general, hepatic, renal and/or pancreatic function. Results: MH raised liver temperature to 42.8 ± 0.4 °C. Although in five of the groups the exposure was relatively well tolerated, in the two of highest frequency (928 kHz) and intensity (18 kA/m), more than 50% of the animals died. A striking elevation in liver and systemic markers was observed after 12 h in the surviving animals, independently of the frequency and intensity used. Ten days later, liver markers were almost recovered in all of the animals. However, in those groups exposed to 591 kHz and 16 kA/m, and 700 kHz and 13.7 kA/m systemic markers remained altered. Conclusions: Exceeding the Atkinson–Brezovich limit up to 9.59 × 109 Am−1s−1 seems to be safe, though further research is needed to understand the impact of intensity and/or frequency on physiological conditions following MH.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain;
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Correspondence: (B.H.d.l.P.); (I.R.)
| | - Irati Rodrigo
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California, Berkeley, CA 94720, USA
- Department of Electricity and Electronics, Faculty of Science and Technology, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain
- Correspondence: (B.H.d.l.P.); (I.R.)
| | - Jon Gutiérrez-Basoa
- Department of Gastroenterology and Hepatology, General University Hospital Consortium of Valencia, ES46014 Valencia, Spain;
| | - Sira Iturrizaga Correcher
- Department of Clinical Analyses, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Carmen Mar Medina
- Department of Clinical Analyses, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Jose Javier Echevarría-Uraga
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Department of Radiology, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain
| | - Jose Angel Garcia
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Department of Physics, Faculty of Science and Technology, University of The Basque Country UPV/EHU, ES48940 Leioa, Spain
| | - Fernando Plazaola
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Department of Electricity and Electronics, Faculty of Science and Technology, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain;
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
| |
Collapse
|
10
|
Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies. NANOMATERIALS 2021; 11:nano11113013. [PMID: 34835777 PMCID: PMC8622891 DOI: 10.3390/nano11113013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
Iron oxide nanoparticle-based hyperthermia is an emerging field in cancer treatment. The hyperthermia is primarily achieved by two differing methods: magnetic fluid hyperthermia and photothermal therapy. In magnetic fluid hyperthermia, the iron oxide nanoparticles are heated by an alternating magnetic field through Brownian and Néel relaxation. In photothermal therapy, the hyperthermia is mainly generated by absorption of light, thereby converting electromagnetic waves into thermal energy. By use of iron oxide nanoparticles, this effect can be enhanced. Both methods are promising tools in cancer treatment and are, therefore, also explored for gastrointestinal malignancies. Here, we provide an extensive literature research on both therapy options for the most common gastrointestinal malignancies (esophageal, gastric and colorectal cancer, colorectal liver metastases, hepatocellular carcinoma, cholangiocellular carcinoma and pancreatic cancer). As many of these rank in the top ten of cancer-related deaths, novel treatment strategies are urgently needed. This review describes the efforts undertaken in vitro and in vivo.
Collapse
|
11
|
Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021; 122:340-384. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, click and bioorthogonal reactions have been the subject of considerable research efforts. These high-performance chemical reactions have been developed to meet requirements not often provided by the chemical reactions commonly used today in the biological environment, such as selectivity, rapid reaction rate, and biocompatibility. Click and bioorthogonal reactions have been attracting increasing attention in the biomedical field for the engineering of nanomedicines. In this review, we study a compilation of articles from 2014 to the present, using the terms "click chemistry and nanoparticles (NPs)" to highlight the application of this type of chemistry for applications involving NPs intended for biomedical applications. This study identifies the main strategies offered by click and bioorthogonal chemistry, with respect to passive and active targeting, for NP functionalization with specific and multiple properties for imaging and cancer therapy. In the final part, a novel and promising approach for "two step" targeting of NPs, called pretargeting (PT), is also discussed; the principle of this strategy as well as all the studies listed from 2014 to the present are presented in more detail.
Collapse
Affiliation(s)
- Ludivine Taiariol
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Carole Chaix
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Farre
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
12
|
Augusto-Jimenez YE, González-Montoya M, Naranjo-Feliciano D, Uribe-Ramírez D, Cristiani-Urbina E, Díaz-Águila C, Yee-Madeira H, Mora-Escobedo R. Antioxidant Activity of Bioactive Peptide Fractions from Germinated Soybeans Conjugated to Fe 3O 4 Nanoparticles by the Ugi Multicomponent Reaction. Molecules 2021; 26:5726. [PMID: 34641270 PMCID: PMC8510160 DOI: 10.3390/molecules26195726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The conjugation of biomolecules to magnetic nanoparticles has emerged as promising approach in biomedicine as the treatment of several diseases, such as cancer. In this study, conjugation of bioactive peptide fractions from germinated soybeans to magnetite nanoparticles was achieved. Different fractions of germinated soybean peptides (>10 kDa and 5-10 kDa) were for the first time conjugated to previously coated magnetite nanoparticles (with 3-aminopropyltriethoxysilane (APTES) and sodium citrate) by the Ugi four-component reaction. The crystallinity of the nanoparticles was corroborated by X-ray diffraction, while the particle size was determined by scanning transmission electron microscopy. The analyses were carried out using infrared and ultraviolet-visible spectroscopy, dynamic light scattering, and thermogravimetry, which confirmed the coating and functionalization of the magnetite nanoparticles and conjugation of different peptide fractions on their surfaces. The antioxidant activity of the conjugates was determined by the reducing power and hydroxyl radical scavenging activity. The nanoparticles synthesized represent promising materials, as they have found applications in bionanotechnology for enhanced treatment of diseases, such as cancer, due to a higher antioxidant capacity than that of fractions without conjugation. The highest antioxidant capacity was observed for a >10 kDa peptide fraction conjugated to the magnetite nanoparticles coated with APTES.
Collapse
Affiliation(s)
| | - Marcela González-Montoya
- Instituto Politécnico Nacional–ENCB, U.P.A.L.M., San Pedro Zacatenco, Ciudad de Mexico 07738, Mexico; (M.G.-M.); (D.U.-R.); (E.C.-U.)
| | | | - Daniel Uribe-Ramírez
- Instituto Politécnico Nacional–ENCB, U.P.A.L.M., San Pedro Zacatenco, Ciudad de Mexico 07738, Mexico; (M.G.-M.); (D.U.-R.); (E.C.-U.)
| | - Eliseo Cristiani-Urbina
- Instituto Politécnico Nacional–ENCB, U.P.A.L.M., San Pedro Zacatenco, Ciudad de Mexico 07738, Mexico; (M.G.-M.); (D.U.-R.); (E.C.-U.)
| | - Carlos Díaz-Águila
- Centro de Biomateriales, Universidad de La Habana, Plaza de la Revolucion 10400, La Habana, Cuba;
| | - Hernani Yee-Madeira
- Instituto Politécnico Nacional–ESFM, U.P.A.L.M., San Pedro Zacatenco, Ciudad de Mexico 07738, Mexico;
| | - Rosalva Mora-Escobedo
- Instituto Politécnico Nacional–ENCB, U.P.A.L.M., San Pedro Zacatenco, Ciudad de Mexico 07738, Mexico; (M.G.-M.); (D.U.-R.); (E.C.-U.)
| |
Collapse
|
13
|
Liu L, Deng Y, Zheng Z, Deng Z, Zhang J, Li J, Liang M, Zhou X, Tan W, Yang H, Neckers LM, Zou F, Chen X. Hsp90 Inhibitor STA9090 Sensitizes Hepatocellular Carcinoma to Hyperthermia-Induced DNA Damage by Suppressing DNA-PKcs Protein Stability and mRNA Transcription. Mol Cancer Ther 2021; 20:1880-1892. [PMID: 34376581 DOI: 10.1158/1535-7163.mct-21-0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
As a conserved molecular chaperone, heat shock protein 90 (Hsp90) maintains the stability and homeostasis of oncoproteins and helps cancer cells survive. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a pivotal role in the non-homologous end joining pathway for DNA double-strand breaks (DSB) repair. Tumor cells contain higher levels of DNA-PKcs to survive by the hostile tumor microenvironment and various antitumor therapies. Here, we showed that increased levels of Hsp90α, Hsp90β, and DNA-PKcs correlated with a poor overall survival in hepatocellular carcinoma (HCC). We revealed that Hsp90 N-terminal domain and C-terminal domain have different effects on DNA-PKcs protein and mRNA levels. The stability of DNA-PKcs depended on Hsp90α N-terminal nucleotide binding domain. Transcription factor SP1 regulates the transcription of PRKDC (gene name of DNA-PKcs) and is a client protein of Hsp90. Inhibition of Hsp90 N-terminal by STA9090 decreased the location of Hsp90α in nucleus, Hsp90α-SP1 interaction, SP1 level, and the binding of Hsp90α/SP1 at the proximal promoter region of PRKDC Because hyperthermia induces DSBs with increases level of DNA-PKcs, combined STA9090 treatment with hyperthermia effectively delayed the tumor growth and significantly decreased DNA-PKcs levels in xenografts model. Consistently, inhibition of Hsp90 increased the number of heat shock-induced γ-H2AX foci and delayed the repair of DSBs. Altogether, our results suggest that Hsp90 inhibitor STA9090 decreases DNA-PKcs protein stability and PRKDC mRNA level, which provide a theoretical basis for the promising combination therapy of hyperthermia and Hsp90 inhibitor in HCC.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yaotang Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhenming Zheng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zihao Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jinxin Zhang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Manfeng Liang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenchong Tan
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Hongjun Yang
- Department of Pathology, Nanfang Hospital, Guangzhou, Guangdong, P.R. China
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, NCI, Hatfield Clinical Research Center, Bethesda, Maryland
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| | - Xuemei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
14
|
Biochemical and Metabolomic Changes after Electromagnetic Hyperthermia Exposure to Treat Colorectal Cancer Liver Implants in Rats. NANOMATERIALS 2021; 11:nano11051318. [PMID: 34067780 PMCID: PMC8156717 DOI: 10.3390/nano11051318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023]
Abstract
Background: Hyperthermia (HT) therapy still remains relatively unknown, in terms of both its biological and therapeutic effects. This work aims to analyze the effects of exposure to HT, such as that required in anti-tumor magnetic hyperthermia therapies, using metabolomic and serum parameters routinely analyzed in clinical practice. Methods: WAG/RigHsd rats were assigned to the different experimental groups needed to emulate all of the procedures involved in the treatment of liver metastases by HT. Twelve hours or ten days after the electromagnetic HT (606 kHz and 14 kA/m during 21 min), blood samples were retrieved and liver samples were obtained. 1H-nuclear-magnetic-resonance spectroscopy (1H-NMR) was used to search for possible diagnostic biomarkers of HT effects on the rat liver tissue. All of the data obtained from the hydrophilic fraction of the tissues were analyzed and modeled using chemometric tools. Results: Hepatic enzyme levels were significantly increased in animals that underwent hyperthermia after 12 h, but 10 d later they could not be detected anymore. The metabolomic profile (main metabolic differences were found in phosphatidylcholine, taurine, glucose, lactate and pyruvate, among others) also showed that the therapy significantly altered metabolism in the liver within 12 h (with two different patterns); however, those changes reverted to a control-profile pattern after 10 days. Conclusions: Magnetic hyperthermia could be considered as a safe therapy to treat liver metastases, since it does not induce irreversible physiological changes after application.
Collapse
|
15
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
16
|
Herrero de la Parte B, González-Arribas M, Diaz-Sanz I, Palomares T, García-Alonso I. Partial hepatectomy enhances the growth of CC531 rat colorectal cancer cells both in vitro and in vivo. Sci Rep 2021; 11:5356. [PMID: 33686132 PMCID: PMC7970880 DOI: 10.1038/s41598-021-85082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Partial hepatectomy (PHx) is the gold standard for the treatment of colorectal cancer liver metastases. However, after removing a substantial amount of hepatic tissue, growth factors are released to induce liver regeneration, which may promote the proliferation of liver micrometastases or circulating tumour cells still present in the patient. The aim of this study is to assess the effect of PHx on the growth of liver metastases induced by intrasplenic cell inoculation as well as on in vitro proliferation of the same cancer cell line. Liver tumours were induced in 18 WAG/RijHsd male rats, by seeding 250,000 syngeneic colorectal cancer cells (CC531) into the spleen. The left lateral lobe of the liver was mobilized and in half of the animals it was removed to achieve a 40% hepatectomy. Twenty-eight days after tumour induction, the animals were sacrificed and the liver was removed and sliced to assess the relative tumour surface area (RTSA%). CC531 cells were cultured in presence of foetal calf serum, non-hepatectomised (NRS) or hepatectomized rat serum (HRS), and their proliferation rate at 24, 48, and 72 h was measured. RTSA% was significantly higher in animals which had undergone PHx than in the controls (non-hepatectomised) (46.98 ± 8.76% vs. 18.73 ± 5.65%; p < 0.05). Analysing each lobe separately, this difference in favour of hepatectomized animals was relevant and statistically significant in the paramedian and caudate lobes. But in the right lobe the difference was scarce and not significant. In vitro, 2.5% HRS achieved stronger proliferative rates than the control cultures (10% FCS) or their equivalent of NRS. In this experimental model, a parallelism has been shown between the effect of PHx on the growth of colorectal cancer cells in the liver and the effect of the serum on those cells in vitro.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain. .,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Mikel González-Arribas
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Iñaki Diaz-Sanz
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Teodoro Palomares
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain.,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| |
Collapse
|
17
|
Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia using Dendrimer Functionalized Iron-Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10112310. [PMID: 33266461 PMCID: PMC7700443 DOI: 10.3390/nano10112310] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
The development of novel nanoparticles for diagnostic and therapeutic applications has been one of the most crucial challenges in cancer theranostics for the last decades. Herein, we functionalized iron oxide nanoparticles (IONPs) with the fourth generation (G4) of poly amidoamine (PAMAM) dendrimers (G4@IONPs) for magnetic hyperthermia treatment of breast cancer in Bagg albino strain C (BALB/c)mice. The survival of breast cancer cells significantly decreased after incubation with G4@IONPs and exposure to an alternating magnetic field (AMF) due to apoptosis and elevation of Bax (Bcl-2 associated X)/Bcl-2(B-cell lymphoma 2) ratio. After intratumoral injection of G4@IONPs, tumor-bearing BALB/c mice were exposed to AMF for 20 min; this procedure was repeated three times every other day. After the last treatment, tumor size was measured every three days. Histopathological and Immunohistochemical studies were performed on the liver, lung, and tumor tissues in treated and control mice. The results did not show any metastatic cells in the liver and lung tissues in the treatment group, while the control mice tissues contained metastatic breast cancer cells. Furthermore, the findings of the present study showed that magnetic hyperthermia treatment inhibited tumor growth by increasing cancer cell apoptosis, as well as reducing the tumor angiogenesis.
Collapse
|
18
|
Rauwel E, Al-Arag S, Salehi H, Amorim CO, Cuisinier F, Guha M, Rosario MS, Rauwel P. Assessing Cobalt Metal Nanoparticles Uptake by Cancer Cells Using Live Raman Spectroscopy. Int J Nanomedicine 2020; 15:7051-7062. [PMID: 33061367 PMCID: PMC7522600 DOI: 10.2147/ijn.s258060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose Nanotechnology applied to cancer treatment is a growing area of research in nanomedicine with magnetic nanoparticle-mediated anti-cancer drug delivery systems offering least possible side effects. To that end, both structural and chemical properties of commercial cobalt metal nanoparticles were studied using label-free confocal Raman spectroscopy. Materials and Methods Crystal structure and morphology of cobalt nanoparticles were studied by XRD and TEM. Magnetic properties were studied with SQUID and PPMS. Confocal Raman microscopy has high spatial resolution and compositional sensitivity. It, therefore, serves as a label-free tool to trace nanoparticles within cells and investigate the interaction between coating-free cobalt metal nanoparticles and cancer cells. The toxicity of cobalt nanoparticles against human cells was assessed by MTT assay. Results Superparamagnetic Co metal nanoparticle uptake by MCF7 and HCT116 cancer cells and DPSC mesenchymal stem cells was investigated by confocal Raman microscopy. The Raman nanoparticle signature also allowed accurate detection of the nanoparticle within the cell without labelling. A rapid uptake of the cobalt nanoparticles followed by rapid apoptosis was observed. Their low cytotoxicity, assessed by means of MTT assay against human embryonic kidney (HEK) cells, makes them promising candidates for the development of targeted therapies. Moreover, under a laser irradiation of 20mW with a wavelength of 532nm, it is possible to bring about local heating leading to combustion of the cobalt metal nanoparticles within cells, whereupon opening new routes for cancer phototherapy. Conclusion Label-free confocal Raman spectroscopy enables accurately localizing the Co metal nanoparticles in cellular environments. The interaction between the surfactant-free cobalt metal nanoparticles and cancer cells was investigated. The facile endocytosis in cancer cells shows that these nanoparticles have potential in engendering their apoptosis. This preliminary study demonstrates the feasibility and relevance of cobalt nanomaterials for applications in nanomedicine such as phototherapy, hyperthermia or stem cell delivery.
Collapse
Affiliation(s)
- Erwan Rauwel
- Institute of Technology, Estonian University of Life Sciences, Tartu, Estonia
| | | | | | - Carlos O Amorim
- Dpt. Of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | | | - Mithu Guha
- Dpt. Of General & Molecular Pathology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maria S Rosario
- CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Protima Rauwel
- Institute of Technology, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
19
|
Herrero de la Parte B, García-Alonso I, Mar-Medina C, Iturrizaga S, Saiz-López A, Hernández-Farto L, Del Campo-Clemente C, Echevarría-Uraga JJ. Ultrasound Tumor Size Assessment, Histology and Serum Enzyme Analysis in a Rat Model of Colorectal Liver Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1504-1512. [PMID: 32178957 DOI: 10.1016/j.ultrasmedbio.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
During tumor development, tissue necrosis appears as a natural phenomenon directly associated with an increase in tumor size. The aim of this study was to assess the use of ultrasound (US) for predicting natural tumor necrosis in a rat liver implant model of colorectal cancer. To achieve this goal, we sought to establish a correlation between US-measured tumor volume, serum enzyme levels and histopathological findings, particularly those regarding necrosis phenomena in liver implants. Under US guidance, CC531 colorectal cancer cells were injected into the left liver lobe of WAG/RijHsd rats. Twenty-eight days after cell inoculation, tumor volume was measured by US, and rats were sacrificed to obtain samples of tumor tissue as well as blood serum. In hematoxylin and eosin-stained tumor samples, the percentage of tumor that was necrotic was estimated. The association between percentage tumor necrosis and US-measured tumor volume was assessed by univariate logistic regression analysis, and a linear regression equation was obtained. Serum enzyme levels did not differ significantly between tumor-bearing and tumor-free rats. Tumor implants appeared as well-defined hyper-echoic regions with a mean volume of 0.61 ± 0.39 mL and tumor necrosis percentage of 8.6 ± 7.7%. Linear regression analysis revealed a very strong relationship (Pearson correlation coefficient r = 0.911) between US-measured tumor volume and tumor necrosis percentage; the regression equation was tumor necrosis percentage = 21 × US-measured tumor volume (in mL) - 3.1. The study found US to be a useful tool in animal-based trials. Tumors inside the liver (ranging in volume from 0.24-1.37 mL) can be observed by US, and moreover, US-measured tumor volume on day 28 can be used to estimate tumor necrosis occurring as the natural evolution of tumor implants.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Carmen Mar-Medina
- Department of Clinical Analysis, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Barrio Labeaga, Galdakao, Spain
| | - Sira Iturrizaga
- Department of Clinical Analysis, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Barrio Labeaga, Galdakao, Spain
| | - Alberto Saiz-López
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Department of Pathology, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Barrio Labeaga, Galdakao, Spain
| | - Leire Hernández-Farto
- Department of Pathology, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Barrio Labeaga, Galdakao, Spain
| | - Consuelo Del Campo-Clemente
- Department of Pathology, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Barrio Labeaga, Galdakao, Spain
| | - Jose Javier Echevarría-Uraga
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Department of Radiology, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Barrio Labeaga, Galdakao, Spain
| |
Collapse
|
20
|
Lasheras X, Insausti M, de la Fuente JM, Gil de Muro I, Castellanos-Rubio I, Marcano L, Fernández-Gubieda ML, Serrano A, Martín-Rodríguez R, Garaio E, García JA, Lezama L. Mn-Doping level dependence on the magnetic response of MnxFe3−xO4 ferrite nanoparticles. Dalton Trans 2019; 48:11480-11491. [DOI: 10.1039/c9dt01620a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Manganese/iron ferrite nanoparticles with different Mn2+/3+ doping grades have been prepared by a thermal decomposition optimized approach so as to ascertain the doping effect on the magnetic hyperthermia response.
Collapse
Affiliation(s)
- Xabier Lasheras
- BCMaterials
- Basque Center for Materials
- Applications and Nanostructures
- UPV/EHU Science Park
- 48940 Leioa
| | - Maite Insausti
- BCMaterials
- Basque Center for Materials
- Applications and Nanostructures
- UPV/EHU Science Park
- 48940 Leioa
| | | | - Izaskun Gil de Muro
- BCMaterials
- Basque Center for Materials
- Applications and Nanostructures
- UPV/EHU Science Park
- 48940 Leioa
| | | | - Lourdes Marcano
- Dpto. Electricidad y Electrónica
- Universidad del País Vasco - UPV/EHU
- 48940 Leioa
- Spain
- Helmholtz-Zentrum Berlin für Materialien und Energie
| | | | - Aida Serrano
- SpLine
- Spanish CRG BM25 Beamline
- ESRF
- Grenoble
- France
| | - Rosa Martín-Rodríguez
- QUIPRE Department
- University of Cantabria
- 39005 Santander
- Spain
- Dpto. Electricidad y Electrónica
| | - Eneko Garaio
- Departamento de Ciencias
- Universidad Pública de Navarra
- Pamplona 31006
- Spain
- Dpto. Electricidad y Electrónica
| | - Jose Angel García
- Dpto. de Física Aplicada II
- Universidad del País Vasco - UPV/EHU
- 48940 Leioa
- Spain
| | - Luis Lezama
- Dpto. de Química Inorgánica
- Universidad del País Vasco
- UPV/EHU
- 48940 Leioa
- Spain
| |
Collapse
|
21
|
Maity D, Kandasamy G, Sudame A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia. Biointerphases 2018; 13:011005. [PMID: 29402091 DOI: 10.1116/1.5009989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of targeted nanoparticles for magnetic hyperthermia (MHT) increases MHT selectivity, but often at the expense of its effectiveness. Consequently, targeted MHT is typically used in combination with other treatment modalities. This work describes an implementation of a highly effective monotherapeutic in vitro MHT treatment based on two populations of magnetic particles. Cells were sequentially incubated with two populations of magnetic particles: nonfunctionalized superparamagnetic nanoparticles and anti-CXCR4-functionalized particles. After removing the excess of free particles, an alternating magnetic field (AMF) was applied to produce MHT. The induced cytotoxicity was assessed at different time-points after AMF application. Complete loss of cell viability was observed 72 h after MHT when the iron loading of the anti-CXCR4-functionalized particles was boosted by that of a nontargeted population. Additionally, induction of necrosis resulted in more efficient cell death than did induction of apoptosis. Achieving a uniquely high effectiveness in monotherapeutic MHT demonstrates the potential of this approach to achieve complete loss of viability of cancer cells while avoiding the side effects of dual-treatment strategies that use MHT only as a sensitizing therapy.
Collapse
|
23
|
Galarreta I, Insausti M, Gil de Muro I, Ruiz de Larramendi I, Lezama L. Exploring Reaction Conditions to Improve the Magnetic Response of Cobalt-Doped Ferrite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E63. [PMID: 29370104 PMCID: PMC5853696 DOI: 10.3390/nano8020063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 01/30/2023]
Abstract
With the aim of studying the influence of synthesis parameters in structural and magnetic properties of cobalt-doped magnetite nanoparticles, Fe3-xCoxO₄ (0 < x < 0.15) samples were synthetized by thermal decomposition method at different reaction times (30-120 min). The Co ferrite nanoparticles are monodisperse with diameters between 6 and 11 nm and morphologies depending on reaction times, varying from spheric, cuboctahedral, to cubic. Chemical analysis and X-ray diffraction were used to confirm the composition, high crystallinity, and pure-phase structure. The investigation of the magnetic properties, both magnetization and electronic magnetic resonance, has led the conditions to improve the magnetic response of doped nanoparticles. Magnetization values of 86 emu·g-1 at room temperature (R.T.) have been obtained for the sample with the highest Co content and the highest reflux time. Magnetic characterization also displays a dependence of the magnetic anisotropy constant with the varying cobalt content.
Collapse
Affiliation(s)
- Itziar Galarreta
- Department of Inorganic Chemistry, University of the Basque Country, UPV/EHU, Bº Sarriena, 48970 Leioa, Spain.
| | - Maite Insausti
- Department of Inorganic Chemistry, University of the Basque Country, UPV/EHU, Bº Sarriena, 48970 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications & Nanostructures, UPV/EHU Science Park, Bº Sarriena, 48970 Leioa, Spain.
| | - Izaskun Gil de Muro
- Department of Inorganic Chemistry, University of the Basque Country, UPV/EHU, Bº Sarriena, 48970 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications & Nanostructures, UPV/EHU Science Park, Bº Sarriena, 48970 Leioa, Spain.
| | - Idoia Ruiz de Larramendi
- Department of Inorganic Chemistry, University of the Basque Country, UPV/EHU, Bº Sarriena, 48970 Leioa, Spain.
| | - Luis Lezama
- Department of Inorganic Chemistry, University of the Basque Country, UPV/EHU, Bº Sarriena, 48970 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications & Nanostructures, UPV/EHU Science Park, Bº Sarriena, 48970 Leioa, Spain.
| |
Collapse
|
24
|
Wu Z, Wang T, Zhang Y, Zheng Z, Yu S, Jing S, Chen S, Jiang H, Ma S. Anticancer effects of β-elemene with hyperthermia in lung cancer cells. Exp Ther Med 2017; 13:3153-3157. [PMID: 28588670 DOI: 10.3892/etm.2017.4350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
β-elemene is a novel, plant-derived anticancer drug, which has been used to target multiple solid tumor types. Hyperthermia is an adjuvant therapeutic modality to treat cancer. However, the underlying mechanisms associated with the efficacy of these two treatments are largely unknown. The aim of the present study was to evaluate the effects of β-elemene combined with hyperthermia in lung cancer cell lines. An MTT assay was used to determine cell viability. The cell cycle and apoptosis were analyzed using flow cytometry. The morphology of cells during apoptosis was determined using a transmission electron microscope. The expression levels of P21, survivin, caspase-9, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) mRNA were detected using quantitative polymerase chain reaction. β-elemene with hyperthermia treatment significantly inhibited the viability and increased the apoptosis rate of A549 cells compared with β-elemene treatment alone (P<0.01), and significantly decreased the proportion of cells in S phase compared with the control (P<0.01). Morphological observation using transmission electron microscopy indicated cross-sectional features of apoptosis: Chromatin condensation, reduced integrity of the plasma membrane, increased cellular granularity, nuclear collapse and the formation of apoptotic bodies. β-elemene with hyperthermia treatment significantly promoted P21 and Bax mRNA expression (P<0.01) and significantly decreased caspase-9, Bcl-2 and survivin mRNA expression (P<0.01) in A549 cells. In conclusion, β-elemene with hyperthermia has a significant inhibitory effect on A549 cells. This occurs through reducing S phase and inducing apoptosis, via an increase in P21 and Bax expression and a decrease in caspase-9, Bcl-2 and survivin expression.
Collapse
Affiliation(s)
- Zhibing Wu
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Ting Wang
- Department of Oncology, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Yanmei Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310005, P.R. China
| | - Zhishuang Zheng
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Shuhuan Yu
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Saisai Jing
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Sumei Chen
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Shenglin Ma
- Center of Hyperthermia Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Molecular Oncology of Chinese Medicine and Western Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
25
|
Sidorenko AS. Physics, chemistry and biology of functional nanostructures III. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:590-591. [PMID: 28382248 PMCID: PMC5355908 DOI: 10.3762/bjnano.8.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/20/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Anatolie S Sidorenko
- D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev, Moldova
| |
Collapse
|