1
|
Zhao Z, Zharnikov M. Exploiting epoxy-rich poly(ethylene glycol) films for highly selective ssDNA sensing via electrochemical impedance spectroscopy. Phys Chem Chem Phys 2023; 25:26538-26548. [PMID: 37752830 DOI: 10.1039/d3cp03851c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This study introduces an alternative approach to immobilize thiolated single-stranded DNA (ssDNA) for the DNA sensing. In contrast to the standard, monomolecular assembly of such moieties on gold substrate, over the thiolate-gold anchors, we propose to use bioinert, porous polyethylene glycol (PEG) films as a 3D template for ssDNA immobilization. The latter process relies on the reaction between the thiol group of the respectively decorated ssDNA and the epoxy groups in the epoxy-rich PEG matrix. The immobilization process and subsequent hybridization ability of the resulting sensing assembly were monitored using cyclic voltammetry and electrochemical impedance spectroscopy, with the latter tool proving itself as the most suitable transduction technique. Electrochemical data confirmed the successful immobilization of thiol-decorated ssDNA probes into the PEG matrix over the thiol-epoxy linkage as well as high hybridization efficiency, selectivity, and sensitivity of the resulting DNA sensor. Whereas this sensor was equivalent to the direct ssDNA assembly in terms of the efficiency, it exhibited a better selectivity and bioinert properties in view of the bioinert character of the PEG matrix. The above findings place PEG films as a promising platform for highly selective ssDNA sensing, leveraging their flexible chemistry, 3D character, and bioinert properties.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Huang X, Tian H, Huang L, Chen Q, Yang Y, Zeng R, Xu J, Chen S, Zhou X, Liu G, Li H, Zhang Y, Zhang J, Zheng J, Cai H, Zhou H. Well-Ordered Au Nanoarray for Sensitive and Reproducible Detection of Hepatocellular Carcinoma-Associated miRNA via CHA-Assisted SERS/Fluorescence Dual-Mode Sensing. Anal Chem 2023; 95:5955-5966. [PMID: 36916246 DOI: 10.1021/acs.analchem.2c05640] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Ultra-sensitive detection of cancer-related biomarkers in serum is of great significance for early diagnosis, treatment, prognosis, and staging of cancer. In this work, we proposed a surface-enhanced Raman scattering and fluorescence (SERS/FL) dual-mode biosensor for hepatocellular carcinoma (HCC)-related miRNA (miR-224) detection using the composition of well-arranged Au nanoarrays (Au NAs) substrate coupled with the target-catalyzed hairpin assembly (CHA) strategy. The hot spots densely and uniformly distributed on the Au array offers considerably enhanced and reproducible SERS signals, along with their wide and open surface to facilitate miR-224 adsorption. By this sensing strategy, the target miR-224 can be detected in a wide linear range (1 fM to 1 nM) with a limit of detection of 0.34 fM in the SERS mode and 0.39 fM in the FL mode. Meanwhile, this biosensor with exceptional specificity and anti-interference ability can discriminate target miR-224 from other interference miRNAs. Practical analysis of human blood samples also demonstrated considerable reliability and repeatability of our developed strategy. Furthermore, this biosensor can distinguish HCC cancer subjects from normal ones and monitor HCC patients before and after hepatectomy as well as guide the distinct Barcelona clinic liver cancer (BCLC) stages. Overall, benefiting from a well-arranged Au nanoarray, CHA amplification strategy, and SERS/metal enhanced fluorescence effect, this established biosensor opens new avenues for the early prediction, warning, monitoring, and staging of HCC.
Collapse
Affiliation(s)
- Xueqin Huang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hemi Tian
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Huang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiuxia Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yingqi Yang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Runmin Zeng
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shanze Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xia Zhou
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guangqiang Liu
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273100, China
| | - Haoyu Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jianglin Zhang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junxia Zheng
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Haibo Zhou
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Mirzapoor A, Turner APF, Tiwari A, Ranjbar B. Electrochemical detection of DNA mismatches using a branch-shaped hierarchical SWNT-DNA nano-hybrid bioelectrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109886. [PMID: 31500014 DOI: 10.1016/j.msec.2019.109886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/26/2022]
Abstract
Common approaches for DNA mutation detection are high cost and have difficult or complex procedure. We propose a fast quantitative method for recognition of DNA mutation based on SWNT/DNA self-assembled nanostructure. Covalent SWNT/DNA hybrid nanostructures are widely used in the fabrication of electrochemical biosensors. Interfacing carbon nanotubes with DNA in particular, is used as a detection method for the analysis of genetic disorders or the detection of mismatches in DNA hybridisation. We have designed a self-assembled, branch-shaped hybrid nanostructure by hybridisation of two sticky oligos that are attached to the ends of SWNTs via a linker oligo. These hybrid nanostructures showed a good conductivity that was greater than free SWNTs. Impedance spectroscopy studies illustrated that the conductivity of these hybrid nanostructures depended on the conformation and structure of the hybridised DNA. We demonstrated that the strategy of using SWNT/DNA self-assembled hybrid nanostructure fabrication yields sensitive and selective tools to discriminate mismatches in DNA. Cyclic voltammetry (CV) and impedance spectroscopy clearly revealed that the conductivity of the branch-shaped and hierarchical hybridised SWNT/DNA nanostructure is higher when matched, than when mismatched in a 1 and 1' hybridised SWNT/DNA nanostructure. Rapid biosensing of match and mismatch nanostructure based on carbon printed electrode showed similar results which can be used for rapid and fast detection of DNA mismatch.
Collapse
Affiliation(s)
- Aboulfazl Mirzapoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Anthony P F Turner
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Ashutosh Tiwari
- Institute of Advanced Materials, VBRI, Teknikringen 4A, Mjärdevi Science Park, 583 30 Linköping, Sweden; Innovation Centre, Vinoba Bhave Research Institute (VBRI), New Delhi 110019, India
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
5
|
Ambrosetti E, Paoletti P, Bosco A, Parisse P, Scaini D, Tagliabue E, de Marco A, Casalis L. Quantification of Circulating Cancer Biomarkers via Sensitive Topographic Measurements on Single Binder Nanoarrays. ACS OMEGA 2017; 2:2618-2629. [PMID: 30023671 PMCID: PMC6044866 DOI: 10.1021/acsomega.7b00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023]
Abstract
Early detection of cancer plays a crucial role in disease prognosis. It requires the recognition and quantification of low amounts of specific molecular biomarkers, either free or transported inside nanovesicles, through the development of novel sensitive diagnostic technologies. In this context, we have developed a nanoarray platform for the noninvasive quantification of cancer biomarkers circulating in the bloodstream. The assay is based on molecular manipulation to create functional spots of surface-immobilized binders and differential topography measurements. It is label-free and requires just a single binder per antigen, and when it is implemented with fluorescence labeling/readout, it can be used for epitope mapping. As a benchmark, we focused on the plasma release of Her2 extracellular domain (ECD), a proposed biomarker for the progression of Her2-positive tumors and response to anticancer therapies. By employing robust, easily engineered camelid nanobodies as binders, we measured ECD-Her2 concentrations in the range of the actual clinical cutoff value for Her2-positive breast cancer. The specificity for Her2 detection was preserved when it was measured in parallel with other potential biomarkers, demonstrating a forthcoming implementation of this approach for multiplexing analysis. Prospectively, this nanorarray platform may be customized to allow for the detection of promising new classes of circulating biomarkers, such as exosomes and microvesicles.
Collapse
Affiliation(s)
- Elena Ambrosetti
- NanoInnovation
Lab, Elettra-Sincrotone S.C.p.A., ss 14 km 163.5 in Area Science Park, 34149 Basovizza-Trieste, Italy
- PhD
School in Nanotechnology, University of
Trieste, Piazzale Europa
1, 34127 Trieste, Italy
- INSTM−ST Unit, ss 14 km 163.5
in Area Science Park, 34149 Basovizza-Trieste, Italy
| | - Pamela Paoletti
- NanoInnovation
Lab, Elettra-Sincrotone S.C.p.A., ss 14 km 163.5 in Area Science Park, 34149 Basovizza-Trieste, Italy
- International
School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Alessandro Bosco
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg, 17177 Stockholm, Sweden
| | - Pietro Parisse
- NanoInnovation
Lab, Elettra-Sincrotone S.C.p.A., ss 14 km 163.5 in Area Science Park, 34149 Basovizza-Trieste, Italy
| | - Denis Scaini
- NanoInnovation
Lab, Elettra-Sincrotone S.C.p.A., ss 14 km 163.5 in Area Science Park, 34149 Basovizza-Trieste, Italy
- PhD
School in Nanotechnology, University of
Trieste, Piazzale Europa
1, 34127 Trieste, Italy
| | - Elda Tagliabue
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS−Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - Ario de Marco
- Center
for Biomedical Sciences and Engineering, University of Nova Gorica, Dvorec Lanthieri, Glavni Trg 8, 5271 Vipava, Slovenia
| | - Loredana Casalis
- NanoInnovation
Lab, Elettra-Sincrotone S.C.p.A., ss 14 km 163.5 in Area Science Park, 34149 Basovizza-Trieste, Italy
| |
Collapse
|
6
|
Capaldo P, Alfarano SR, Ianeselli L, Zilio SD, Bosco A, Parisse P, Casalis L. Circulating Disease Biomarker Detection in Complex Matrices: Real-Time, In Situ Measurements of DNA/miRNA Hybridization via Electrochemical Impedance Spectroscopy. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pietro Capaldo
- Elettra-Sincrotrone Trieste S.C.p.A., Area
Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | | | - Luca Ianeselli
- Elettra-Sincrotrone Trieste S.C.p.A., Area
Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | - Simone Dal Zilio
- CNR-IOM, Laboratorio TASC, Area
Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | - Alessandro Bosco
- Elettra-Sincrotrone Trieste S.C.p.A., Area
Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., Area
Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
- INSTM-ST Unit, Area Science Park,
Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste S.C.p.A., Area
Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
- INSTM-ST Unit, Area Science Park,
Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| |
Collapse
|