1
|
Shao F, Zheng L, Lan J, Zenobi R. Nanoscale Chemical Imaging of Coadsorbed Thiolate Self-Assembled Monolayers on Au(111) by Tip-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:1645-1653. [DOI: 10.1021/acs.analchem.1c03968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester M13 9PL, U.K
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Liqing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Shuman NS, Ard SG, Sweeny BC, Viggiano AA, Owen CJ, Armentrout PB. Methane Adducts of Gold Dimer Cations: Thermochemistry and Structure from Collision-Induced Dissociation and Association Kinetics. J Phys Chem A 2020; 124:3335-3346. [PMID: 32176490 DOI: 10.1021/acs.jpca.0c01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bond dissociation energies at 0 K (BDE) of Au2+-CH4 and Au2CH4+-CH4 have been determined using two separate experimental methods. Analyses of collision-induced dissociation cross sections for Au2CH4+ + Xe and Au2(CH4)2+ + Xe measured using a guided ion beam tandem mass spectrometer (GIBMS) yield BDEs of 0.71 ± 0.05 and 0.57 ± 0.07 eV, respectively. Statistical modeling of association kinetics of Au2(CH4)0-2+ + CH4 + He measured from 200 to 400 K and at 0.3-0.9 Torr using a selected-ion flow tube (SIFT) apparatus yields slightly higher values of 0.81 ± 0.21 and 0.75 ± 0.25 eV. The SIFT data also place a lower limit on the BDE of Au2C2H8+-CH4 of 0.35 eV, likely an activated isomer, not Au2(CH4)2+-CH4. Particular emphasis is placed on determining the uncertainty in the derivation from association kinetics measurements, including uncertainties in collisional energy transfer, calculated harmonic frequencies, and possible contribution of isomerization of the association complexes. This evaluation indicates that an uncertainty of ±0.2 eV should be expected and that an uncertainty of better than ±0.1 eV is unlikely to be reasonable.
Collapse
Affiliation(s)
- Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Brendan C Sweeny
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Cameron J Owen
- Department of Chemistry, University of Utah, 315 S. 1400 E., Rm 2020, Salt Lake City, Utah 84112, United States
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S. 1400 E., Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Chan CH, Poignant F, Beuve M, Dumont E, Loffreda D. Effect of the Ligand Binding Strength on the Morphology of Functionalized Gold Nanoparticles. J Phys Chem Lett 2020; 11:2717-2723. [PMID: 32146808 DOI: 10.1021/acs.jpclett.0c00300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Functionalized gold nanoparticles are investigated by density functional theory calculations in the context of cancer radiotherapy. Several typical experimental shapes, including nanostars, nanospheres, and nanorods, are modeled by optimizing Au clusters covered by organic monolayers composed of hydrated short-chain polyethylene glycol (PEG) ligands. The PEGylation stabilizes significantly the stellation of decahedral Au54 by deforming significantly its geometry at the spikes. The higher stability of the PEG molecules adsorbed on this stellated nanocluster with respect to the more spherical icosahedral Au55 and truncated octahedral Au79 leads to a larger energy cost to desorb them and thus a weaker propensity for the starred nanoparticle to exchange ligands with the cell membrane, in agreement with experiments. These results open interesting possibilities for advancing our understanding of the cellular uptake of gold nanoparticles.
Collapse
Affiliation(s)
- Chen-Hui Chan
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Floriane Poignant
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, PHABIO, Villeurbanne 69322, France
| | - Michaël Beuve
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, PHABIO, Villeurbanne 69322, France
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - David Loffreda
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| |
Collapse
|
4
|
Yang X, Yang Z, Tang F, Xu J, Zhang M, Choi MMF. Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:955-966. [PMID: 31165022 PMCID: PMC6541327 DOI: 10.3762/bjnano.10.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Polydisperse water-soluble gold nanoclusters (AuNCs) protected by penicillamine have been synthesized in this work. The sequential size-selective precipitation (SSSP) technique has been applied for the size fractionation and purification of the monolayer-protected AuNCs. Through continuously adding acetone to a crude AuNC aqueous solution and controlling the volume percentage of acetone, we successfully separated the polydisperse AuNCs with diameters ranging from 0.5 to 5.4 nm into four different fractions sequentially. High-resolution transmission electron microscopy (HRTEM) shows that the four fractions are well-dispersed spherical particles of diameter 3.0 ± 0.6, 2.3 ± 0.5, 1.7 ± 0.4, and 1.2 ± 0.4 nm. Proton nuclear magnetic resonance spectroscopy suggests that disulfide, excess ligands and gold(I) complexes were removed from the AuNCs fractions. These results demonstrate the considerable potential of the SSSP technique for size-based separation and purification of AuNCs, achieving not only the isolation of larger nanoclusters (NCs) from small NCs in a continuous fashion, but also for the removal of small-molecule impurities. Based on the results from the mass spectrometry and thermogravimetric analysis, the average composition of the four fractions can be represented by Au38(SR)18, Au28(SR)15, Au18(SR)12, and Au11(SR)8, respectively. This indicates that the SSSP separation is mainly dependent on the core size and the ratio of Au atoms to ligands of AuNCs. X-ray photoelectron spectroscopy (XPS) has also been applied to observe the molecular dependence on the gold and sulfur chemical state of organosulfur monolayers of the fractions. The photoluminescence spectra of these AuNCs in the range of 900-790 nm was investigated at room temperature. The results show that the peak emission energy of the size-selected AuNCs undergoes a blue shift when the size is decreased, which can be attributed to the quantum confinement effect.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Zhengli Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Maoxue Zhang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Martin M F Choi
- Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
5
|
Samieegohar M, Sha F, Clayborne AZ, Wei T. ReaxFF MD Simulations of Peptide-Grafted Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5029-5036. [PMID: 30869899 DOI: 10.1021/acs.langmuir.8b03951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Functionalized gold nanoparticles have critical applications in biodetection with surface-enhanced Raman spectrum and drug delivery. In this study, reactive force field molecular dynamics simulations were performed to study gold nanoparticles, which are modified with different short-chain peptides consisting of amino acid residues of cysteine and glycine in different grafting densities in the aqueous environment. Our study showed slight facet-dependent peptide adsorption on a gold nanoparticle with the 3 nm core diameter. Peptide chains prefer to adsorb on the Au(111) facet compared to those on other facets of Au(100) and Au(110). In addition to the stable thiol interaction with gold nanoparticle surfaces, polarizable oxygen and nitrogen atoms show strong interactions with the gold surface and polarize the gold nanoparticle surfaces with an overall positive charge. Charges of gold atoms vary according to their contacts with peptide atoms and lattice positions. However, at the outmost peptide layer, the whole functionalized Au nanoparticles exhibit overall negative electrostatic potential due to the grafted peptides. Moreover, simulations show that thiol groups can be deprotonated and subsequently protons can be transferred to water molecules and carboxyl groups.
Collapse
Affiliation(s)
- Mohammadreza Samieegohar
- Chemical Engineering Department , Howard University , 2366 Sixth Street , Washington , District of Columbia 20059 , United States
| | - Feng Sha
- Network Information Center , Xiamen University of Technology , 600 Ligong Road , Jimei District, Xiamen 361024 , Fujian Province, China
| | - Andre Z Clayborne
- Chemistry Department , Howard University , 525 College Street , Washington , District of Columbia 20059 , United States
| | - Tao Wei
- Chemical Engineering Department , Howard University , 2366 Sixth Street , Washington , District of Columbia 20059 , United States
| |
Collapse
|
6
|
Hladík M, Vetushka A, Fejfar A, Vázquez H. Tuning of the gold work function by carborane films studied using density functional theory. Phys Chem Chem Phys 2019; 21:6178-6185. [PMID: 30821802 DOI: 10.1039/c9cp00346k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using density functional theory including van der Waals interactions, we calculate the adsorption and electronic properties of dithiol-dicarba-closo-dodecaboranes chemisorbed on Au(111) surfaces. Carborane molecules consist of a cage-like structure made of boron and carbon atoms and possess a large intrinsic dipole. We consider two functionalized carborane positional isomers, with thiol linker groups attached to either carbon or boron backbone atoms, such that when adsorbed on the Au substrate, the molecular dipole points towards the metal surface or away from it. We investigate a large number of junction geometries and find that carborane adsorption can induce significant changes in the work function of the Au substrate, in the range of 1 eV. These changes depend strongly on the interface geometry at the atomistic level. From the analysis of these junction structures, we provide a picture of the driving mechanisms that determine adsorption geometries, and relate them to interface electronic structure and resulting work function modification. In particular, our results highlight the important role played in these interface quantities by distortions in the Au surface layer induced by carborane adsorption.
Collapse
Affiliation(s)
- Martin Hladík
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague, Czech Republic.
| | | | | | | |
Collapse
|
7
|
Tuca E, Paci I. Computer simulations of self-assembled energy materials. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1306063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- E. Tuca
- Department of Chemistry, University of Victoria, Victoria, Canada
| | - I. Paci
- Department of Chemistry, University of Victoria, Victoria, Canada
| |
Collapse
|