1
|
Shutava T, Jansen C, Livanovich K, Pankov V, Janiak C. Metal organic framework/polyelectrolyte composites for water vapor sorption applications. Dalton Trans 2022; 51:7053-7067. [PMID: 35393994 DOI: 10.1039/d2dt00518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) core particles of MIL-101(Cr), aluminum fumarate (Basolite® A520), MIL-53-TDC, zirconium fumarate, and UiO-66 were modified by adsorption of thin polyelectrolyte (PE)-based shells without deterioration of their crystal structure. By applying different PEs and depositing a single layer (MOF/PE) or one to three layer-by-layer assembled bilayers (MOF/LbL), the mass percent of shell material in the composite was varied from 0.6-2.5% to 50%. Under a constant relative pressure of water vapor, the moisture uptake by a MOF/PE and a MOF/LbL is rather comparable with its S-shaped curvature to that of pristine MOFs. The relevant differences, such as a shift of the ascending adsorption part to lower/higher relative pressure or an increase/decrease in water uptake in selected regions, are associated with the core-shell structure and related to the morphological changes of the MOF powders. The hydrophilic surface promotes the formation of liquid menisci at the points of contact between particles and accelerates the moisture uptake and loss. A decrease in water sorption under an atmosphere with high humidity by some composites can be associated with the inhibition of liquid water condensation by the more hydrophobic shells.
Collapse
Affiliation(s)
- Tatsiana Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna St., Minsk 220141, Belarus.
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Kanstantsin Livanovich
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna St., Minsk 220141, Belarus.
| | - Vladimir Pankov
- Belarusian State University, 4 Nezavisimosti Av., Minsk 220030, Belarus
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
2
|
Hostert JD, Loney CN, Pramounmat N, Yan K, Su Z, Renner JN. Self-Assembly and Rearrangement of a Polyproline II Helix Peptide on Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6115-6122. [PMID: 33974431 DOI: 10.1021/acs.langmuir.0c03583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyproline peptide sequences have gained popularity as anchors for peptide-based self-assembled monolayers (SAMs) due to their attractive properties. In this work, peptides containing the polyproline II helix (PPII) conformation were designed and assembled on gold (Au). A quartz crystal microbalance with dissipation was used to characterize SAM formation kinetics and related properties. Peptides were designed with the sequence (GPPPPPG)2C. It was discovered that a biexponential adsorption and rearrangement model describes the binding kinetics of the PPII-containing peptide on Au. In this model, an initial reversible binding step is followed by an irreversible rearrangement step, given by parameter kt. This study found kt to be approximately 0.00064 s-1 for the PPII-containing peptides. Similarly, we found that the adsorption of the PPII-containing peptide on Au, given by ΔGads, was thermodynamically favorable (-7.8 kcal mol-1) and comparable to other common thiol terminated SAMs on Au. Furthermore, we characterized SAM properties via QCM-D, Fourier-transform infrared (FTIR) spectroscopy, and electrochemical techniques to reveal high molecular density SAMs consisting of PPII helices. In addition, these SAMs were found to have high antifouling properties. Overall, this study characterizes the fundamental assembly mechanisms, particularly, rearrangement of PPII-containing peptides for the first time, which will be useful in the designing of future peptide-based SAMs with high surface coverage and antifouling properties.
Collapse
Affiliation(s)
- Jacob D Hostert
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Charles N Loney
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nuttanit Pramounmat
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Katherine Yan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zihang Su
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Julie N Renner
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
3
|
Mobarak Qamsari E, Kermanshahi RK, Erfan M, Ghadam P. Microencapsulation of Omeprazole by Lactobacillus acidophilus ATCC 4356 Surface Layer Protein and Evaluation of its Stability in Acidic Condition. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:240-254. [PMID: 33841539 PMCID: PMC8019888 DOI: 10.22037/ijpr.2019.111681.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study introduces a novel method for encapsulation of the acid-labile drug called Omeprazole using Lactobacillus acidophilus (L. acidophilus) ATCC 4356 S-layer protein. Before preparing the Omeprazole suspension, a series of preliminary studies were performed on the Omeprazole powder. For this purpose, some parameters such as melting point, IR spectrum, UV spectrum, and the particle size of Omeprazole powder were investigated. The size reduction process was done in order to achieve an ideal formulation. Ultimately, the resulting powder had an average particle size of 35.516 μm and it was almost uniform. After calculating the amount of S-layer protein required for complete covering of drug particles, the effect of different factors on the drug coating process was investigated with one factor at a time method. Then stability of coated Omeprazole was evaluated in acetate buffer (pH 5). Finally, the maximum coat of drug particles was determined using S- layer protein of Lactobacillus acidophilus ATCC 4356 at 25 °C for 2 h, shaking rate of 100 rpm and ratio of 2:1 for S-layer protein amount/Omeprazole Surface in Tris hydrochloride buffer medium (50 mM, pH 8). The coating of Omeprazole by the S-layer protein decreased the drug decomposition rate up to 2.223.
Collapse
Affiliation(s)
- Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Rouha Kasra Kermanshahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Erfan
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
4
|
Eilenberg M, Enayati M, Ehebruster D, Grasl C, Walter I, Messner B, Baudis S, Potzmann P, Kaun C, Podesser BK, Wojta J, Bergmeister H. Long Term Evaluation of Nanofibrous, Bioabsorbable Polycarbonate Urethane Grafts for Small Diameter Vessel Replacement in Rodents. Eur J Vasc Endovasc Surg 2019; 59:643-652. [PMID: 31874809 DOI: 10.1016/j.ejvs.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Biodegradable materials for in situ vascular tissue engineering could meet the increasing clinical demand for sufficient synthetic small diameter vascular substitutes in aortocoronary bypass and peripheral vascular surgery. The aim of this study was to design a new degradable thermoplastic polycarbonate urethane (dPCU) with improved biocompatibility and optimal biomechanical properties. Electrospun conduits made from dPCU were evaluated in short and long term follow up and compared with expanded polytetrafluoroethylene (ePTFE) controls. METHODS Both conduits were investigated prior to implantation to assess their biocompatibility and inflammatory potential via real time polymerase chain reaction using a macrophage culture. dPCU grafts (n = 28) and ePTFE controls (n = 28) were then implanted into the infrarenal abdominal aorta of Sprague-Dawley rats. After seven days, one, six, and 12 months, grafts were analysed by histology and immunohistochemistry (IHC) and assessed biomechanically. RESULTS Anti-inflammatory signalling was upregulated in dPCU conduits and increased significantly over time in vitro. dPCU and ePTFE grafts offered excellent long and short term patency rates (92.9% in both groups at 12 months) in the rat model without dilatation or aneurysm formation. In comparison to ePTFE, dPCU grafts showed transmural ingrowth of vascular specific cells resulting in a structured neovessel formation around the graft. The graft material was slowly reduced, while the compliance of the neovessel increased over time. CONCLUSION The newly designed dPCU grafts have the potential to be safely applied for in situ vascular tissue engineering applications. The degradable substitutes showed good in vivo performance and revealed desirable characteristics such as biomechanical stability, non-thrombogenicity, and minimal inflammatory response after long term implantation.
Collapse
Affiliation(s)
- Magdalena Eilenberg
- Department of Surgery, Medical University of Vienna, Vienna, Austria; Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Marjan Enayati
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Daniel Ehebruster
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christian Grasl
- Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Centre of Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ingrid Walter
- Department of Pathobiology, Veterinary University, Vienna, Austria
| | - Barbara Messner
- Surgical Research Laboratories-Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul Potzmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Kaun
- Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Helga Bergmeister
- Centre for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Huang X, Chen Q, Pan W, Hu J, Yao Y. Assessing the Mass Sensitivity for Different Electrode Materials Commonly Used in Quartz Crystal Microbalances (QCMs). SENSORS 2019; 19:s19183968. [PMID: 31540039 PMCID: PMC6767270 DOI: 10.3390/s19183968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022]
Abstract
Mass sensitivity is vital for quartz crystal microbalance (QCM)-based data analysis. The mass sensitivity distribution of QCMs may differ greatly depending on the shapes, thicknesses, sizes, and materials of the metal electrodes. This is not considered by the Sauerbrey equation, and has a large potential to cause errors in QCM-based data analysis. Many previous works have studied the effects of shape, thickness, and size of metal electrodes on mass sensitivity. However, it is necessary to continue to clarify the relationship between the mass sensitivity and the electrode material of the QCM. In this paper, the results of both theoretical calculation and experimental analysis showed that the mass sensitivity of QCMs with gold electrodes is higher than that of the QCMs with silver electrodes, which in turn indicated that the mass sensitivity of QCMs varies with the electrode material. Meanwhile, the results of this study showed that the mass sensitivity of QCMs with different electrode materials is not proportional to the density of the electrode materials. This result suggests that, in order to obtain more accurate results in the practical applications of QCMs, the influence of electrode material on the mass sensitivity of the QCMs must be considered.
Collapse
Affiliation(s)
- Xianhe Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Qiao Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Wei Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jianguo Hu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Institut für Informatik VI, Technische Universität München, Schleißheimer Straße 90a, Garching 85748, Germany.
| | - Yao Yao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
6
|
Sanchez-Rexach E, Iturri J, Fernandez J, Meaurio E, Toca-Herrera JL, Sarasua JR. Novel biodegradable and non-fouling systems for controlled-release based on poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Adv 2019; 9:24154-24163. [PMID: 35527860 PMCID: PMC9069632 DOI: 10.1039/c9ra04398e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 07/27/2019] [Indexed: 02/04/2023] Open
Abstract
Quercetin is a strong antioxidant with low bioavailability due to its high crystallinity. A further drawback is that Quercetin has potentially toxic effects at high concentrations. To improve this low water solubility, as well as control the concentration of the flavonoid in the body, Quercetin is incorporated into a polymeric matrix to form an amorphous solid dispersion (ASD) stable enough to resist the recrystallization of the drug. For this purpose, miscible poly(ε-caprolactone) (PCL) and Quercetin (Q) blends are prepared, provided that they have complementary interacting groups. For compositions in which the flavonoid remains in an amorphous state thanks to the interactions with polymer chains, various PCL/Q drug release platforms are fabricated: micrometric films by solvent casting, nanometric films by spin coating, and nanofibers by electrospinning. Then, the potential use of bacterial S-layer proteins as release-preventive membranes is tested on PCL-Quercetin blends, due to their ability to construct a biomimetic coating including nanometric pores. For all the platforms, the SbpA coating can maintain a stable release under the toxicity level of Quercetin. Accordingly, a PCL/Q system with an S-layer coating allows the design of versatile bioavailable Quercetin eluting devices that prevent toxicity and biofouling issues.
Collapse
Affiliation(s)
- Eva Sanchez-Rexach
- Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country UPV/EHU Plaza Ingeniero Torres Quevedo 1 Bilbao 48013 Spain
| | - Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU) Muthgasse 11 (Simon Zeisel Haus) Vienna 1190 Austria
| | - Jorge Fernandez
- Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country UPV/EHU Plaza Ingeniero Torres Quevedo 1 Bilbao 48013 Spain
| | - Emilio Meaurio
- Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country UPV/EHU Plaza Ingeniero Torres Quevedo 1 Bilbao 48013 Spain
| | - Jose-Luis Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU) Muthgasse 11 (Simon Zeisel Haus) Vienna 1190 Austria
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country UPV/EHU Plaza Ingeniero Torres Quevedo 1 Bilbao 48013 Spain
| |
Collapse
|
7
|
Investigation on Mass Sensitivity of N-M Type Electrode Quartz Crystal Microbalance. SENSORS 2019; 19:s19092125. [PMID: 31071973 PMCID: PMC6539312 DOI: 10.3390/s19092125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/30/2023]
Abstract
Mass sensitivity plays a crucial role in the practical application of quartz crystal microbalances (QCMs)-based quantitative analysis. n-m type QCMs have many applications, so it is necessary to clarify the relationship between the mass sensitivity and the electrode of the n-m type QCM. The performance of gold-plated films with different electrodes was studied by theoretical calculation and experiment. The results show that the mass sensitivity on the surface of the n electrode and the surface of the m electrode are essentially the same. Meanwhile, the mass sensitivity of n-m type QCMs varies with the diameter of the n and m electrodes. When the diameter of the n electrode is close to half the diameter of the m electrode, mass sensitivity is at maximum value. These results are important for the further designs and applications of n-m type QCMs.
Collapse
|
8
|
Life under Continuous Streaming: Recrystallization of Low Concentrations of Bacterial SbpA in Dynamic Flow Conditions. COATINGS 2019. [DOI: 10.3390/coatings9020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The well-known bacterial S-layer protein SbpA from Lysinibacillus sphaericus CCM2177 induces spontaneous crystal formation via cooperative self-assembly of the protein subunits into an ordered supramolecular structure. Recrystallization occurs in the presence of divalent cations (i.e., Ca2+) and finally leads to producing smooth 2-D crystalline coatings composed of squared (p4) lattice structures. Among the factors interfering in such a process, the rate of protein supply certainly plays an important role since a limited number of accessible proteins might turn detrimental for film completion. Studies so far have mostly focused on high SbpA concentrations provided under stopped-flow or dynamic-flow conditions, thus omitting the possibility of investigating intermediate states, in which dynamic flow is applied for more critical concentrations of SbpA (i.e., 25, 10, and 5 µg/mL). In this work, we have characterized both physico-chemical and topographical aspects of the assembly and recrystallization of SbpA protein in such low concentration conditions by means of in situ Quartz Crystal Microbalance with Dissipation (QCMD) and atomic force microscopy (AFM) measurements, respectively. On the basis of these experiments, we can confirm how the application of a dynamic flow influences the formation of a closed and crystalline protein film from low protein concentrations (i.e., 10 µg/mL), which otherwise would not be formed.
Collapse
|
9
|
Huang X, Bai Q, Pan W, Hu J. Quartz Crystal Microbalance with Approximately Uniform Sensitivity Distribution. Anal Chem 2018; 90:6367-6370. [PMID: 29730932 DOI: 10.1021/acs.analchem.8b01529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nonuniformity of QCMs' mass sensitivity distribution is a disadvantage to practical applications. Through theoretical calculations, we found that common ring electrode QCMs could obtain approximately uniform sensitivity distribution by carefully selecting the inner and outer diameters and mass loading factor of the electrode. A series of experiments were carried out using 10 MHz ring electrode QCMs with an inner diameter of 2 mm, an outer diameter of 5 mm, and a loading factor R of 0.0044. The experimental results proved that its mass sensitivity distribution is approximately uniform. This special designed ring electrode QCMs is suitable and convenient for highly accurate measurements.
Collapse
Affiliation(s)
- Xianhe Huang
- School of Automation Engineering , University of Electronic Science and Technology of China , Chengdu , Sichuan 611731 , China
| | - Qingsong Bai
- School of Automation Engineering , University of Electronic Science and Technology of China , Chengdu , Sichuan 611731 , China.,Electrical & Computer Engineering Department , University of California , Los Angeles , California 90095 , United States
| | - Wei Pan
- School of Automation Engineering , University of Electronic Science and Technology of China , Chengdu , Sichuan 611731 , China
| | - Jianguo Hu
- School of Automation Engineering , University of Electronic Science and Technology of China , Chengdu , Sichuan 611731 , China
| |
Collapse
|
10
|
Moudgil A, Kalyani N, Sinsinbar G, Das S, Mishra P. S-Layer Protein for Resistive Switching and Flexible Nonvolatile Memory Device. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4866-4873. [PMID: 29308639 DOI: 10.1021/acsami.7b15062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a flexible resistive switching memory device consisting of S-layer protein (Slp) is demonstrated for the first time. This novel device (Al/Slp/indium tin oxide/polyethylene terephthalte) based on a simple and easy fabrication method is capable of bistable switching to low resistive state (LRS) and high resistive state (HRS). This device exhibits bistable memory behavior with stability and a long retention time (>4 × 103 s), being stable up to a 500 cycle endurance test and with significant HRS/LRS ratio. The device possesses consistent switching performance for more than 100 times bending, corresponding to desired applicability for biocompatible wearable electronics. The memory mechanism is attributed to a trapping/de-trapping process in S-layer protein. These promising results of the flexible memory device could find a way in the wearable storage applications like smart bands and sports equipments' sensors.
Collapse
Affiliation(s)
- Akshay Moudgil
- Centre for Applied Research in Electronics and ‡Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016, India
| | - Neeti Kalyani
- Centre for Applied Research in Electronics and ‡Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016, India
| | - Gaurav Sinsinbar
- Centre for Applied Research in Electronics and ‡Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016, India
| | - Samaresh Das
- Centre for Applied Research in Electronics and ‡Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016, India
| | - Prashant Mishra
- Centre for Applied Research in Electronics and ‡Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Iturri J, Moreno-Cencerrado A, Toca-Herrera JL. Polyelectrolyte brushes as supportive substrate for bacterial S-layer recrystallization: Polymer charge and chain extension factors. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Iturri J, Moreno-Cencerrado A, Toca-Herrera JL. Cation-chelation and pH induced controlled switching of the non-fouling properties of bacterial crystalline films. Colloids Surf B Biointerfaces 2017; 158:270-277. [PMID: 28704713 DOI: 10.1016/j.colsurfb.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 01/08/2023]
Abstract
We report the controlled loss of the anti-fouling activity of the S-layer protein SbpA from Lysinibacillus sphaericus (CCM2177). This protein forms crystal-like films with square lattice (p4) via self-assembly on almost any type of surfaces. Such engineered bioinspired nanometric membranes are known by their excellent preventive performance under biological conditions. However, their exposure to certain treatments can lead to gradual degradation of the S-protein layer. In this work, two distinctive approaches are studied for understanding either specific or non-specific degradation of the film, by treatment with a chelating agent (EDTA), which interacts with inner Ca2+ ions, or Citrate buffer (with pH<pI), respectively. Subsequently, the degraded protein films have been tested upon binding of polyelectrolytes of different charge and endothelial HUVEC cells, and their performance compared to that of intact S-layers. The SbpA protein layer degradation process as well as its impact on the loss of anti-fouling properties have been characterized, in terms of mass and structural changes, by means of real time quartz crystal microbalance with dissipation (QCM-D) monitoring, atomic force microscopy (AFM) experiments, and fluorescence microscopy. The results show that overall structure degradation (citrate buffer) has a higher impact on the loss of antifouling properties than selective removal of divalent cations. Thus, crystal structure integrity is a necessary condition for bacterial antifouling properties.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeise l Haus), A-1190 Vienna, Austria.
| | - Alberto Moreno-Cencerrado
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeise l Haus), A-1190 Vienna, Austria
| | - José L Toca-Herrera
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeise l Haus), A-1190 Vienna, Austria.
| |
Collapse
|