1
|
Takahashi Y, Sasaki Y, Yoshida T, Honda K, Zhou Y, Miyamoto T, Motoo T, Higashi H, Shevchuk A, Korchev Y, Ida H, Hanayama R, Fukuma T. Nanopipette Fabrication Guidelines for SICM Nanoscale Imaging. Anal Chem 2023; 95:12664-12672. [PMID: 37599426 DOI: 10.1021/acs.analchem.3c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Scanning ion conductance microscopy (SICM) is a promising tool for visualizing the dynamics of nanoscale cell surface topography. However, there are still no guidelines for fabricating nanopipettes with ideal shape consisting of small apertures and thin glass walls. Therefore, most of the SICM imaging has been at a standstill at the submicron scale. In this study, we established a simple and highly reproducible method for the fabrication of nanopipettes with sub-20 nm apertures. To validate the improvement in the spatial resolution, we performed time-lapse imaging of the formation and disappearance of endocytic pits as a model of nanoscale time-lapse topographic imaging. We have also successfully imaged the localization of the hot spot and the released extracellular vesicles. The nanopipette fabrication guidelines for the SICM nanoscale topographic imaging can be an essential tool for understanding cell-cell communication.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Yuya Sasaki
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Yoshida
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Kota Honda
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuanshu Zhou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takafumi Miyamoto
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tomoko Motoo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroki Higashi
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| | - Yuri Korchev
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| | - Hiroki Ida
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Rikinari Hanayama
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|
3
|
Sacrificial gold coating enhances transport of liquid metal in pressurized fountain pen lithography. Sci Rep 2021; 11:4670. [PMID: 33633292 PMCID: PMC7907188 DOI: 10.1038/s41598-021-84065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 11/08/2022] Open
Abstract
Liquid metals have attracted attention as functional components for moldable electronics, such as soft flexible connectors, wires or conductive ink. The relatively high surface tension (> 400 mN m−1) and the fact that liquid metals do not readily wet ceramic or oxide surfaces have led to devising unique techniques to spread the liquid and mold its shape. These techniques include surface modification, electrowetting and vacuum filling of channels. This work presents an injection technique based on pressurized fountain pen lithography with glass nanopipettes developed to directly pattern liquid metal on flat hard substrates. The liquid metals were eutectic alloys of Gallium, including Gallium-Indium (EGaIn), Gallium-Indium-Zinc and Gallium-Indium-Tin. The nanopipettes were coated internally with gold, acting as a sacrificial layer and facilitating the wetting of the pipette down to its pore, with an inner diameter of ~ 100–300 nm. By applying hydrodynamic pressure to the connected end of the pipette, the metal was extruded through the pore, forming long continuous (> 3 mm) and narrow (~ 1–15 µm) metal lines on silicon oxide and gold surfaces at room temperature and ambient conditions. With this robust platform, it is possible to pattern liquid metals on a variety of substrates and geometries down to the micron range.
Collapse
|
4
|
Navikas V, Leitão SM, Marion S, Davis SJ, Drake B, Fantner GE, Radenovic A. High-Throughput Nanocapillary Filling Enabled by Microwave Radiation for Scanning Ion Conductance Microscopy Imaging. ACS APPLIED NANO MATERIALS 2020; 3:7829-7834. [PMID: 33458601 PMCID: PMC7809705 DOI: 10.1021/acsanm.0c01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 05/17/2023]
Abstract
Solid-state nanopores provide a highly sensitive tool for single-molecule sensing and probing nanofluidic effects in solutions. Glass nanopipettes are a cheap and robust type of solid-state nanopore produced from pulling glass capillaries with opening orifice diameters down to below tens of nanometers. Sub-50 nm nanocapillaries allow an unprecedented resolution for translocating single molecules or for scanning ion conductance microscopy imaging. Due to the small opening orifice diameters, such nanocapillaries are difficult to fill with solutions, compromising their advantages of low cost, availability, and experimental simplicity. We present a simple and cheap method to reliably fill nanocapillaries down to sub-10 nm diameters by microwave radiation heating. Using a large statistic of filled nanocapillaries, we determine the filling efficiency and physical principle of the filling process using sub-50 nm quartz nanocapillaries. Finally, we have used multiple nanocapillaries filled by our method for high-resolution scanning ion conductance microscopy imaging.
Collapse
Affiliation(s)
- Vytautas Navikas
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Samuel M. Leitão
- Laboratory
for Bio- and Nano-Instrumentation, EPFL, 1015 Lausanne, Switzerland
| | - Sanjin Marion
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Sebastian James Davis
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Barney Drake
- Laboratory
for Bio- and Nano-Instrumentation, EPFL, 1015 Lausanne, Switzerland
| | - Georg E. Fantner
- Laboratory
for Bio- and Nano-Instrumentation, EPFL, 1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Sun L, Shigyou K, Ando T, Watanabe S. Thermally Driven Approach To Fill Sub-10-nm Pipettes with Batch Production. Anal Chem 2019; 91:14080-14084. [PMID: 31589026 DOI: 10.1021/acs.analchem.9b03848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Typically, utilization of small nanopipettes results in either high sensitivity or spatial resolution in modern nanoscience and nanotechnology. However, filling a nanopipette with a sub-10-nm pore diameter remains a significant challenge. Here, we introduce a thermally driven approach to filling sub-10-nm pipettes with batch production, regardless of their shape. A temperature gradient is applied to transport water vapor from the backside of nanopipettes to the tip region until bubbles are completely removed from this region. The electrical contact and pore size for filling nanopipettes are confirmed by current-voltage and transmission electron microscopy (TEM) measurements, respectively. In addition, we quantitatively compare the pore size between the TEM characterization and estimation on the basis of pore radius and conductance. The validity of this method provides a foundation for highly sensitive detection of single molecules and high spatial resolution imaging of nanostructures.
Collapse
Affiliation(s)
- Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| |
Collapse
|
6
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|