1
|
Ding D, Gao R, Lei Y, Liu J, Zhou C, Wen Y, Zhou S, Guo J, Li T. Synergistic immune augmentation enabled by covalently conjugating TLR4 and NOD2 agonists. Eur J Med Chem 2024; 278:116792. [PMID: 39217861 DOI: 10.1016/j.ejmech.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Enhancing the efficacy of subunit vaccines relies significantly on the utilization of potent adjuvants, particularly those capable of triggering multiple immune pathways. To achieve synergistic immune augmentation by Toll-like receptor 4 agonist (TLR4a) and nucleotide-binding oligomerization-domain-containing protein 2 agonist (NOD2a), in this work, we conjugated RC529 (TLR4a) and MDP (NOD2a) to give RC529-MDP, and evaluated its adjuvanticity for OVA antigen. Compared to the unconjugated RC529+MDP, RC529-MDP remarkably enhanced innate immune responses with 6.8-fold increase in IL-6 cytokine, and promoted the maturation of antigen-presenting cells (APCs), possibly because of the conjugation of multiple agonists ensuring their delivery to the same cell and activation of various signaling pathways within that cell. Furthermore, RC529-MDP improved OVA-specific antibody response, T cells response and the memory T cells ratio relative to the unconjugated mixture. Therefore, covalently conjugating TLR4 agonist and NOD2 agonist was an effective strategy to enhance immune responses, providing the potential to design and develop more effective vaccines.
Collapse
Affiliation(s)
- Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Runing Gao
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yujuan Lei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jianing Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengkai Zhou
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shihao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
2
|
Dangerfield EM, Ishizuka S, Kodar K, Yamasaki S, Timmer MSM, Stocker BL. Chimeric NOD2 Mincle Agonists as Vaccine Adjuvants. J Med Chem 2024; 67:5373-5390. [PMID: 38507580 DOI: 10.1021/acs.jmedchem.3c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There is a need for improved vaccine adjuvants to augment vaccine efficacy. One way to address this is by targeting multiple immune cell pathogen recognition receptors (PRRs) using chimeric pathogen-associated molecular patterns (PAMPs). Conjugation of the PAMPs will ensure codelivery of the immunostimulatory molecules to the same cell, enhancing adjuvant activity. The macrophage inducible C-type lectin (Mincle) is a promising PRR for adjuvant development; however, no effective chimeric Mincle adjuvants have been prepared. We addressed this by synthesizing Mincle adjuvant conjugates, MDP-C18Brar and MDP-C18Brar-dilipid, which contain PAMPs recognized by Mincle and the nucleotide-binding oligomerization domain 2 (NOD2). The two PAMPs are joined by a pH-sensitive oxyamine linker which, upon acidification at lysosomal pH, hydrolyzed to release the NOD2 ligands. The conjugates elicited the production of Th1 and Th17 promoting cytokines in vitro, and when using OVA as a model antigen, exhibited enhanced T-cell-mediated immune responses and reduced toxicity in vivo, compared to the coadministration of the adjuvants.
Collapse
Affiliation(s)
- Emma M Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Vacariu CM, Tanner ME. Recent Advances in the Synthesis and Biological Applications of Peptidoglycan Fragments. Chemistry 2022; 28:e202200788. [PMID: 35560956 DOI: 10.1002/chem.202200788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.
Collapse
Affiliation(s)
- Condurache M Vacariu
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Built-in adjuvants for use in vaccines. Eur J Med Chem 2022; 227:113917. [PMID: 34688011 DOI: 10.1016/j.ejmech.2021.113917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023]
Abstract
Vaccine refers to biological products that are produced using various pathogenic microorganisms for inoculation. The goal of vaccination is to induce a robust immune response against a specific antigen, thus preventing the organism from getting infected. In vaccines, adjuvants have been widely employed to enhance immunity against specific antigens. An ideal adjuvant should be stable, biodegradable, and low cost, not induce system rejection and promote an immune response. Various adjuvant components have been investigated across diverse applications. Typically, adjuvants are employed to meet the following objectives: (1) to improve the effectiveness of immunization with vaccines for specific populations, such as newborns and the elderly; (2) enhance the immunogenicity of highly purified or recombinant antigens; (3) allow immunization with a smaller dose of the vaccine, reducing drug dosage. In the present review, we primarily focus on chemically synthesized compounds that can be used as built-in adjuvants. We elaborate the classification of these compounds based on the induced immune activation mechanism and summarize their application in various vaccine types.
Collapse
|
5
|
Gragnani T, Cuffaro D, Fallarini S, Lombardi G, D'Andrea F, Guazzelli L. Selectively Charged and Zwitterionic Analogues of the Smallest Immunogenic Structure of Streptococcus Pneumoniae Type 14. Molecules 2019; 24:E3414. [PMID: 31546911 PMCID: PMC6767069 DOI: 10.3390/molecules24183414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Zwitterionic polysaccharides (ZPs) have been shown in recent years to display peculiar immunological properties, thus attracting the interest of the carbohydrate research community. To fully elucidate the mechanisms underlying these properties and exploit the potential of this kind of structures, in depth studies are still required. In this context, the preparation of two cationic, an anionic, as well as two zwitterionic tetrasaccharide analogues of the smallest immunogenic structure of Streptococcus pneumoniae type 14 (SP14) capsular polysaccharide are presented. By exploiting a block strategy, the negative charge has been installed on the non-reducing end of the lactose unit of the tetrasaccharide and the positive charge either on the non-reducing end of the lactosamine moiety or on an external linker. These structures have then been tested by competitive ELISA, showing that the structural variations we made do not modify the affinity of the neutral compound to binding to a specific antibody. However, lower efficacies than the natural SP14 compound were observed. The results obtained, although promising, point to the need to further elongate the polysaccharide structure, which is likely too short to cover the entire epitopes.
Collapse
Affiliation(s)
- Tiziana Gragnani
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Doretta Cuffaro
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Silvia Fallarini
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy.
| | - Grazia Lombardi
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy.
| | - Felicia D'Andrea
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| |
Collapse
|
6
|
Zom GG, Willems MMJHP, Meeuwenoord NJ, Reintjens NRM, Tondini E, Khan S, Overkleeft HS, van der Marel GA, Codee JDC, Ossendorp F, Filippov DV. Dual Synthetic Peptide Conjugate Vaccine Simultaneously Triggers TLR2 and NOD2 and Activates Human Dendritic Cells. Bioconjug Chem 2019; 30:1150-1161. [PMID: 30865430 DOI: 10.1021/acs.bioconjchem.9b00087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simultaneous triggering of Toll-like receptors (TLRs) and NOD-like receptors (NLRs) has previously been shown to synergistically activate monocytes, dendritic cells, and macrophages. We applied these properties in a T-cell vaccine setting by conjugating the NOD2-ligand muramyl-dipeptide (MDP) and TLR2-ligand Pam3CSK4 to a synthetic peptide derived from a model antigen. Stimulation of human DCs with the MDP-peptide-Pam3CSK4 conjugate led to a strongly increased secretion of pro-inflammatory and Th1-type cytokines and chemokines. We further show that the conjugated ligands retain their ability to trigger their respective receptors, while even improving NOD2-triggering. Also, activation of murine DCs was enhanced by the dual triggering, ultimately leading to effective induction of vaccine-specific T cells expressing IFNγ, IL-2, and TNFα. Together, these data indicate that the dual MDP-SLP-Pam3CSK4 conjugate constitutes a chemically well-defined vaccine approach that holds promise for the use in the treatment of virus infections and cancer.
Collapse
Affiliation(s)
- Gijs G Zom
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Marian M J H P Willems
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Nico J Meeuwenoord
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Niels R M Reintjens
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Elena Tondini
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Selina Khan
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Jeroen D C Codee
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| |
Collapse
|
7
|
Lazor KM, Zhou J, DeMeester KE, D'Ambrosio EA, Grimes CL. Synthesis and Application of Methyl N,O-Hydroxylamine Muramyl Peptides. Chembiochem 2019; 20:1369-1375. [PMID: 30672111 DOI: 10.1002/cbic.201800731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 01/01/2023]
Abstract
The innate immune system's interaction with bacterial cells plays a pivotal role in a variety of human diseases. Carbohydrate units derived from a component of bacterial cell wall, peptidoglycan (PG), are known to stimulate an immune response. Nonetheless, access to modified late-stage peptidoglycan intermediates is limited due to their synthetic complexity. A method to rapidly functionalize PG fragments is needed to better understand the natural host-PG interactions. Here methyl N,O-hydroxylamine linkers are incorporated onto a synthetic PG derivative, muramyl dipeptide (MDP). The modification of MDP maintained the ability to stimulate a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) immune response dependent on the expression of nucleotide-binding oligomerization domain-containing protein 2 (Nod2). Intrigued by this modification's maintenance of biological activity, several applications were explored. Methyl N,O-hydroxylamine MDP was amendable to N-hydroxylsuccinimide (NHS) chemistry for bioconjugation to fluorophores as well as a self-assembled monolayer for Nod2 surface plasmon resonance analysis. Finally, linker incorporation was applicable to larger PG fragments, both enzymatically generated from Escherichia coli or chemically synthesized. This methodology provides rapid access to PG probes in one step and allows for the installation of a variety of chemical handles to advance the molecular understanding of PG and the innate immune system.
Collapse
Affiliation(s)
- Klare M Lazor
- Department of Chemistry and Biochemistry, University of Delaware, 140 Brown Lab, Newark, DE, 19716, USA
| | - Junhui Zhou
- Department of Chemistry and Biochemistry, University of Delaware, 140 Brown Lab, Newark, DE, 19716, USA
| | - Kristen E DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, 140 Brown Lab, Newark, DE, 19716, USA
| | - Elizabeth A D'Ambrosio
- Department of Chemistry and Biochemistry, University of Delaware, 140 Brown Lab, Newark, DE, 19716, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, 140 Brown Lab, Newark, DE, 19716, USA.,Department of Biological Sciences, University of Delaware, 140 Brown Lab, Newark, DE, 19716, USA
| |
Collapse
|
8
|
Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 2016; 83:308-20. [PMID: 26796043 DOI: 10.1016/j.biomaterials.2016.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/29/2015] [Accepted: 01/01/2016] [Indexed: 11/23/2022]
Abstract
Despite the significant increase in our knowledge on cancer initiation and progression, and the development of novel cancer treatments, overall patient survival rates have thus far only marginally improved. However, it can be expected that lasting tumor control will be attainable for an increasing number of cancer patients in the foreseeable future, which is likely to be achieved by combining cancer chemotherapy with anticancer immunotherapy. A plethora of new cancer chemotherapy reagents are expected to become accessible to the clinic in the coming years which can then be used for efficient tumor debulking and aid in antigen exposure to the immune system. Durable remission and the eradication of micrometastases are likely to be achieved with specialized monoclonal antibodies and therapeutic cancer vaccines that modulate the immune system to overcome immunosuppression and kill distant cancer cells. Moreover, the method of drug delivery to tumors, stromal and immune cells is expected to shift largely from conventional 'free' drug molecules to encapsulated in targeted nano-vehicles, therapeutics often referred to or considered part of "nanomedicine". Several biocompatible nano-vehicles, such as metal-nanoparticles, biodegradable-nanoparticles, liposomes or dendrimers are potential candidates for targeted drug delivery but may also serve additional purposes. A dexterous combination of nanomedicine, cancer immunotherapy and chemotherapeutic engineering are likely to become the basis for new hope in the form of targeted cancer therapies that could attack tumors early in their development. One can envision nano-vehicles that would selectively deliver effective doses of chemotherapeutic agents to cancer cells while leaving healthy cells untouched. Furthermore, given that after chemotherapeutic treatment there often remains a limited number of chemo-resistant tumor cells, which go on to drive tumor progression, nano-vehicles could also be engineered to provoke an appropriate immune response to destroy these cells. Here, we discuss the potential of the combinatorial role of cancer chemotherapy, cancer immunotherapy and the prospective of nanotechnology for the targeted delivery of chemoimmunotherapeutic agents.
Collapse
|
9
|
Willems MMJHP, Zom GG, Meeuwenoord N, Khan S, Ossendorp F, Overkleeft HS, van der Marel GA, Filippov DV, Codée JDC. Lipophilic Muramyl Dipeptide-Antigen Conjugates as Immunostimulating Agents. ChemMedChem 2015; 11:190-8. [PMID: 26059481 DOI: 10.1002/cmdc.201500196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/09/2022]
Abstract
Muramyl dipeptide (MDP) is the smallest peptidoglycan fragment capable of triggering the innate immune system through interaction with the intracellular NOD2 receptor. To develop synthetic vaccine modalities composed of an antigenic entity (typically a small peptide) and a molecular adjuvant with well-defined activity, we previously assembled covalent MDP-antigen conjugates. Although these were found to be capable of stimulating the NOD2 receptor and were processed by dendritic cells (DCs) leading to effective antigen presentation, DC maturation--required for an apt immune response--could not be achieved with these conjugates. To improve the efficacy of these vaccine modalities, we equipped the MDP moiety with lipophilic tails, well-known modifications to enhance the immune-stimulatory activity of MDPs. Herein we report the design and synthesis of a lipophilic MDP-antigen conjugate and show that it is a promising vaccine modality capable of stimulating the NOD2 receptor, maturing DCs, and delivering antigen cargo into the MHC-I cross-presentation pathway.
Collapse
Affiliation(s)
- Marian M J H P Willems
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gijs G Zom
- Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Nico Meeuwenoord
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Selina Khan
- Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Ferry Ossendorp
- Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
10
|
LU HUIXIA, WU QI, YANG HUIJUN. DUOX2 promotes the elimination of the Klebsiella pneumoniae strain K5 from T24 cells through the reactive oxygen species pathway. Int J Mol Med 2015; 36:551-8. [DOI: 10.3892/ijmm.2015.2234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|