1
|
Boden A, Dart A, Liao TY, Zhu DM, Bhave M, Cipolla L, Kingshott P. Enhancing the Activity of Surface Immobilized Antimicrobial Peptides Using Thiol-Mediated Tethering to Poly(ethylene glycol). Macromol Biosci 2023; 23:e2200411. [PMID: 37167630 DOI: 10.1002/mabi.202200411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/19/2023] [Indexed: 05/13/2023]
Abstract
Considering the need for versatile surface coatings that can display multiple bioactive signals and chemistries, the use of more novel surface modification methods is starting to emerge. Thiol-mediated conjugation of biomolecules is shown to be quite advantageous for such purposes due to the reactivity and chemoselectivity of thiol functional groups. Herein, the immobilization of poly(ethylene glycol) (PEG) and antimicrobial peptides (AMPs) to silica colloidal particles based on thiol-mediated conjugation techniques, along with an assessment of the antimicrobial potential of the functionalized particles against Pseudomonas aeruginosa and Staphylococcus aureus is investigated. Immobilization of PEG to thiolated Si particles is performed by either a two-step thiol-ene "photo-click" reaction or a "one-pot" thiol-maleimide type conjugation using terminal acrylate or maleimide functional groups, respectively. It is demonstrated that both immobilization methods result in a significant reduction in the number of viable bacterial cells compared to unmodified samples after the designated incubation periods with the PEG-AMP-modified colloidal suspensions. These findings provide a promising outlook for the fabrication of multifunctional surfaces based upon the tethering of PEG and AMPs to colloidal particles through thiol-mediated biocompatible chemistry, which has potential for use as implant coatings or as antibacterial formulations that can be incorporated into wound dressings to prevent or control bacterial infections.
Collapse
Affiliation(s)
- Andrew Boden
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Alexander Dart
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Tzu-Ying Liao
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - De Ming Zhu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
2
|
Pyridoneimine-catalyzed anomeric aqueous oxa-Michael additions of native mono- and disaccharides. Carbohydr Res 2022; 520:108610. [PMID: 35863121 DOI: 10.1016/j.carres.2022.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
A pyridoneimine-catalyzed oxa-Michael addition of protecting groups-free, native mono- and disaccharides with Michael acceptors in aq. solution is reported. Several mono- and disaccharides are reacted with acceptors, namely, methylvinyl ketone, acrylonitrile and tert-butyl acrylate in aq. solution, the addition catalyzed by n-pentylpyridone imine. The addition occurs site-selectively at the anomeric lactol and the remaining hydroxy functionalities are un-affected. The resulting keto-glycopyranoside products are explored in aldol, allylation and oxime product formation, occurring at either α-methyl moiety or at the keto-moiety, with appropriate synthons. In another direction, the keto-glycopyranoside is functionalized further with amino acids through reductive amination in aq. methanol solution. Formation of hemiacetal anion occurs in the presence of pyridoneimine in aq. Solution, enabling subsequent addition to occur with acceptors. Facile reductive amination of the resulting keto-glycoside provides an avenue for conjugations with amino acids in the present work.
Collapse
|
3
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
4
|
Guizzardi R, Vacchini M, Santambrogio C, Cipolla L. Convergent dendrimer synthesis by olefin metathesis and studies toward glycoconjugation. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthesis of novel hyperbranched monodisperse linear dendrimers, based on 2,2-bis-(hydroxymethyl)-propionic acid (bis-MPA), has been achieved by convergent metathesis-mediated coupling between the alkene-terminated focal point of bis-MPA dendrons. On their surface, dendrimers present 4, 8 and 16 functional groups. Glycodendrimers exposing multiple saccharide moieties have also been obtained. To the best of our knowledge, this is the first example of the use of metathesis for focal point coupling.
Collapse
Affiliation(s)
- Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
5
|
Pifferi C, Daskhan GC, Fiore M, Shiao TC, Roy R, Renaudet O. Aminooxylated Carbohydrates: Synthesis and Applications. Chem Rev 2017; 117:9839-9873. [PMID: 28682060 DOI: 10.1021/acs.chemrev.6b00733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Gour Chand Daskhan
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Michele Fiore
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Tze Chieh Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France.,Institut Universitaire de France , 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|