1
|
Miao H, Yu R, Zheng J, Shang J, Zhang L, Ma M, Yang Y. Ph 3PO-Modulated Kdo Glycosidation for Stereoselective Synthesis of β-Kdo-Containing Disaccharides. Org Lett 2024; 26:10634-10639. [PMID: 39614817 DOI: 10.1021/acs.orglett.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A Ph3PO-modulated β-selective Kdo glycosidation approach is developed for the stereoselective synthesis of β-Kdo glycosides. With the readily available per-O-acetylated Kdo ynenoate as the donor, the glycosylation with a series of alcohols in the presence of Ph3PAuOTf and Ph3PO in toluene at low temperatures afforded the desired Kdo glycosides with good to excellent β-selectivities. Furthermore, the Ph3PO-modulated approach was effectively applied to the synthesis of β-(2→4)- and β-(2→8)-linked Kdo-Kdo disaccharides for further biological studies.
Collapse
Affiliation(s)
- He Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rurong Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jibin Zheng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jintao Shang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lvfeng Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minghui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Li T, Zhang M, Lv P, Yang Y, Schmidt RR, Peng P. Synthesis of Core M3 Matriglycan Constituents via an Additive-Controlled 1,2- cis-Xylopyranosylation with O-Xylosyl Imidates as Donors. J Org Chem 2024; 89:804-809. [PMID: 38146924 DOI: 10.1021/acs.joc.3c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
A highly stereoselective strategy for 1,2-cis-xylopyranoside bond formation was established via a preactivation-based, additive-modulated trichloroacetimidate glycosidation strategy. The current protocol is mild, practical, and successful with various xylopyranosyl donors and glycosyl acceptors, including acceptors that are reported to be less reactive due to steric hindrance. The utility of this method was demonstrated with the facile assembly of matriglycan constituent tetra- and hexasaccharides.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Panpan Lv
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Yue Yang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
The Light-Controlled Release of 2-fluoro-l-fucose, an Inhibitor of the Root Cell Elongation, from a nitrobenzyl-caged Derivative. Int J Mol Sci 2023; 24:ijms24032533. [PMID: 36768855 PMCID: PMC9916816 DOI: 10.3390/ijms24032533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glycan metabolic engineering is a powerful tool for studying the glycosylation in living plant cells. The use of modified monosaccharides such as deoxy or fluorine-containing glycosides has been reported as a powerful pharmacological approach for studying the carbohydrate metabolism. 1,3,4-tri-O-acetyl-2-fluoro-l-fucose (2F-Fuc) is a potent inhibitor of the plant cell elongation. After feeding plant seedlings with 2F-Fuc, this monosaccharide derivative is deacetylated and converted by the endogenous metabolic machinery into the corresponding nucleotide-sugar, which then efficiently inhibits Golgi-localized fucosyltransferases. Among plant cell wall polymers, defects in the fucosylation of the pectic rhamnogalacturonan-II cause a decrease in RG-II dimerization, which in turn induce the arrest of the cell elongation. In order to perform the inhibition of the cell elongation process in a spatio-temporal manner, we synthesized a caged 3,4-di-O-acetyl-1-hydroxy-2-fluoro-l-fucose (1-OH-2F-Fuc) derivative carrying a photolabile ortho-nitrobenzyl alcohol function at the anomeric position: 3,4-di-O-acetyl-1-ortho-nitrobenzyl-2-fluoro-l-fucose (2F-Fuc-NB). The photorelease of the trapped 1-OH-2F-Fuc was performed under a 365 nm LED illumination. We demonstrated that the in planta elimination by photoexcitation of the photolabile group releases free 2F-Fuc in plant cells, which in turn inhibits in a dose-dependent manner and, reversibly, the root cell elongation.
Collapse
|
4
|
Mukherji A, Rotta MKV, Sarmah BK, Kancharla PK. Influence of Various Silyl Protecting Groups on Stereoselective 2-Deoxyrhamnosylation. J Org Chem 2023; 88:245-260. [PMID: 36524596 DOI: 10.1021/acs.joc.2c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The influence of various silyl protecting groups on 2-deoxyrhamnosylation using 2-deoxyrhamnosyl acetates, thioglycosides, and (p-methoxyphenyl)vinylbenzoate (PMPVB) donors has been presented. C-Glycosylation reactions reveal that tert-butyldimethylsilyl (TBDMS), triisopropylsilyl (TIPS), and tert-butyldiphenylsilyl (TBDPS) silyl protected rhamnosyl oxocarbenium ions have no facial selectivity except for the conformationally (4H3) locked tetraisopropyldisiloxane (TIPDS) protected rhamnose donor, which provides complete α-selectivity. However, TBDPS protected rhamnosyl donors are found to be superior protecting groups for α-stereoselective O-glycosylation reactions with various acceptors. The observed results are found consistent across donors and donor activation conditions. Most importantly, the study was conducted at room temperature unlike the other energy-intensive low-temperature studies and was bound to have more practical utility. The outcomes have been explained using kinetic and thermodynamic analyses.
Collapse
Affiliation(s)
- Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mahendra K V Rotta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bikash K Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Polák P, Cossy J. Ni-Catalyzed Cross-Coupling of 2-Iodoglycals and 2-Iodoribals with Grignard Reagents: A Route to 2-C-Glycosides and 2'-C-Nucleosides. Chemistry 2022; 28:e202104311. [PMID: 35238093 DOI: 10.1002/chem.202104311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/17/2022]
Abstract
The synthesis of 2-C-glycals and 2-C-ribals was achieved in good yields using a nickel-catalyzed cross-coupling between 2-iodoglycals and 2-iodoribal respectively and Grignard reagents. The prepared 2-C-glycals and ribals were then transformed into 2-C-2-deoxyglycosides, 2-C-diglycosides and 2'-C-2'-deoxynucleosides. The developed method was applied to the synthesis of a 2-chloroadenine 2'-deoxyribonucleoside - a structural analogue of cladribine (Mavenclad®, Leustatin®) and clofarabine (Clolar®, Evoltra®), two compounds used in the treatment of relapsing-remitting multiple sclerosis and hairy cell leukemia.
Collapse
Affiliation(s)
- Peter Polák
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
6
|
Liu X, Lin Y, Liu A, Sun Q, Sun H, Xu P, Li G, Song Y, Xie W, Sun H, Yu B, Li W. 2‐Diphenylphosphinonyl
‐acetyl as a Remote Directing Group for the Highly Stereoselective Synthesis of
β‐Glycosides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yetong Lin
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Ao Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Qianhui Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Huiyong Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guolong Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yingying Song
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Weijia Xie
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Haopeng Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| |
Collapse
|
7
|
Pongener I, Pepe DA, Ruddy JJ, McGarrigle EM. Stereoselective β-mannosylations and β-rhamnosylations from glycosyl hemiacetals mediated by lithium iodide. Chem Sci 2021; 12:10070-10075. [PMID: 34377400 PMCID: PMC8317664 DOI: 10.1039/d1sc01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Stereoselective β-mannosylation is one of the most challenging problems in the synthesis of oligosaccharides. Herein, a highly selective synthesis of β-mannosides and β-rhamnosides from glycosyl hemi-acetals is reported, following a one-pot chlorination, iodination, glycosylation sequence employing cheap oxalyl chloride, phosphine oxide and LiI. The present protocol works excellently with a wide range of glycosyl acceptors and with armed glycosyl donors. The method doesn't require conformationally restricted donors or directing groups; it is proposed that the high β-selectivities observed are achieved via an SN2-type reaction of α-glycosyl iodide promoted by lithium iodide.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Dionissia A Pepe
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Joseph J Ruddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
8
|
Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and Selectivity. Catalysts 2020. [DOI: 10.3390/catal10101142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Owing to their abundance in biomass and availability at a low cost, carbohydrates are very useful precursors for products of interest in a broad range of scientific applications. For example, they can be either converted into basic chemicals or used as chiral precursors for the synthesis of potentially bioactive molecules, even including nonsaccharide targets; in addition, there is also a broad interest toward the potential of synthetic sugar-containing structures in the field of functional materials. Synthetic elaboration of carbohydrates, in both the selective modification of functional groups and the assembly of oligomeric structures, is not trivial and often entails experimentally demanding approaches practiced by specialized groups. Over the last years, a large number of solvent-free synthetic methods have appeared in the literature, often being endowed with several advantages such as greenness, experimental simplicity, and a larger scope than analogous reactions in solution. Most of these methods are catalytically promoted, and the catalyst often plays a key role in the selectivity associated with the process. This review aims to describe the significant recent contributions in the solvent-free synthetic chemistry of carbohydrates, devoting a special critical focus on both the mechanistic role of the catalysts employed and the differences evidenced so far with corresponding methods in solution.
Collapse
|
9
|
Chang CW, Lin MH, Wu CH, Chiang TY, Wang CC. Mapping Mechanisms in Glycosylation Reactions with Donor Reactivity: Avoiding Generation of Side Products. J Org Chem 2020; 85:15945-15963. [DOI: 10.1021/acs.joc.0c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University Taipei 106, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Kumar M, Reddy TR, Gurawa A, Kashyap S. Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of "armed" and "disarmed" glycal donors. Org Biomol Chem 2020; 18:4848-4862. [PMID: 32608448 DOI: 10.1039/d0ob01042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective activation of "armed' and ''disarmed" glycal donors enabling the stereo-controlled glycosylations by employing Cu(ii)-catalyst as the promoter has been realized. The distinctive stereochemical outcome in the process is mainly influenced by the presence of diverse protecting groups on the donor and the solvent system employed. The protocol is compatible with a variety of aglycones including carbohydrates, amino acids, and natural products to access deoxy-glycosides and glycoconjugates with high α-anomeric selectivity. Notably, the synthetic practicality of the method is amply verified for the stereoselective assembling of trisaccharides comprising 2-deoxy components. Mechanistic studies involving deuterated experiments validate the syn-diastereoselective 1,2-addition of acceptors on the double bond of armed donors.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Thurpu Raghavender Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| |
Collapse
|
11
|
Tatina MB, Moussa Z, Xia M, Judeh ZMA. Perfluorophenylboronic acid-catalyzed direct α-stereoselective synthesis of 2-deoxygalactosides from deactivated peracetylated d-galactal. Chem Commun (Camb) 2019; 55:12204-12207. [PMID: 31549691 DOI: 10.1039/c9cc06151g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perfluorophenylboronic acid 1c catalyzes the direct stereoselective addition of alcohol nucleophiles to deactivated peracetylated d-galactal to give 2-deoxygalactosides in 55-88% yield with complete α-selectivity. The unprecedented results reported here also enable the synthesis of disaccharides containing the 2-deoxygalactose moiety directly from the deactivated peracetylated d-galactal. This convenient and metal-free glycosylation method works well with a wide range of alcohol nucleophiles as acceptors and tolerates a range of functional groups without the formation of the Ferrier byproduct and without the need for a large excess of nucleophiles or additives. The method is potentially useful for the synthesis of a variety of α-2-deoxygalactosides.
Collapse
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, 15551, United Arab Emirates
| | - Mengxin Xia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
12
|
Kelemen V, Bege M, Eszenyi D, Debreczeni N, Bényei A, Stürzer T, Herczegh P, Borbás A. Stereoselective Thioconjugation by Photoinduced Thiol-ene Coupling Reactions of Hexo- and Pentopyranosyl d- and l-Glycals at Low-Temperature-Reactivity and Stereoselectivity Study. Chemistry 2019; 25:14555-14571. [PMID: 31368604 PMCID: PMC6900028 DOI: 10.1002/chem.201903095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/31/2019] [Indexed: 12/17/2022]
Abstract
A comprehensive optimization and mechanistic study on the photoinduced hydrothiolation of different d- and l- hexo- and pentoglycals with various thiols was performed, at the temperature range of RT to -120 °C. Addition of thiols onto 2-substituted hexoglycals proceeded with complete 1,2-cis-α-stereoselectivity in all cases. Hydrothiolation of 2-substituted pentoglycals resulted in mixtures of 1,2-cis-α- and -β-thioglycosides of varying ratio depending on the configuration of the reactants. Hydrothiolation of unsubstituted glycals at -80 °C proceeded with excellent yields and, except for galactal, provided the axially C2-S-linked isomers with high selectivity. Cooling was always beneficial to the efficacy, increased the yields and in most cases significantly raised the stereoselectivity. The suggested mechanism explains the different conformational preferences of the intermediate carbon-centered radicals, which is a crucial factor in the stereoselectivity of the reactions.
Collapse
Affiliation(s)
- Viktor Kelemen
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of Pharmaceutical SciencesUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Miklós Bege
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Molecular Recognition and Interaction Research GroupUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Dániel Eszenyi
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Nóra Debreczeni
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Attila Bényei
- Department of Physical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Tobias Stürzer
- Bruker AXS GmbHÖstliche Rheinbrückenstraße 4976187KarlsruheGermany
| | - Pál Herczegh
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
13
|
Pongener I, Nikitin K, McGarrigle EM. Synthesis of glycosyl chlorides using catalytic Appel conditions. Org Biomol Chem 2019; 17:7531-7535. [PMID: 31369028 DOI: 10.1039/c9ob01544b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stereoselective synthesis of glycosyl chlorides using catalytic Appel conditions is described. Good yields of α-glycosyl chlorides were obtained using a range of glycosyl hemiacetals, oxalyl chloride and 5 mol% Ph3PO. For 2-deoxysugars treatment of the corresponding hemiacetals with oxalyl chloride without phosphine oxide catalyst also gave good yields of glycosyl chloride. The method is operationaly simple and the 5 mol% phosphine oxide by-product can be removed easily. Alternatively a one-pot, multi-catalyst glycosylation can be carried out to transform the glycosyl hemiacetal directly to a glycoside.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kirill Nikitin
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoghan M McGarrigle
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Wang J, Deng C, Zhang Q, Chai Y. Tuning the Chemoselectivity of Silyl Protected Rhamnals by Temperature and Brønsted Acidity: Kinetically Controlled 1,2-Addition vs Thermodynamically Controlled Ferrier Rearrangement. Org Lett 2019; 21:1103-1107. [PMID: 30714737 DOI: 10.1021/acs.orglett.9b00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An acidity- and temperature-dependent chemoselective glycosylation of silyl-protected rhamnals with alcohols has been revealed. The reaction undergoes a 1,2-addition pathway with (±)-CSA as the catalyst at rt, affording kinetically controlled 2-deoxyl rhamnosides. In contrast, only thermodynamically controlled 2,3-unsaturated rhamnosides are formed via Ferrier rearrangement when elevating reaction temperature to 85 °C or using CF3SO3H instead. This tunable glycosylation allows facile and practical access to both 2-deoxyl and 2,3-unsaturated rhamnosides with excellent yields and high α-stereoselectivity.
Collapse
Affiliation(s)
- Jincai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Chuqiao Deng
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| |
Collapse
|
15
|
Yang G, Luo X, Guo H, Wang Q, Zhou J, Huang T, Tang J, Shan J, Zhang J. α-Selective synthesis of 2-deoxy-glycosides and disaccharides. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1439498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Guofang Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaosheng Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hong Guo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qingbing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiafen Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tianyun Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jie Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Junjie Shan
- Department of Pharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
16
|
Gupta MR, Thakur K, Khare NK. L-Proline/CeCl 3·7H 2O-NaI mediated stereoselective synthesis of α-2-deoxy glycosides from glucal. Carbohydr Res 2018; 457:51-55. [PMID: 29422121 DOI: 10.1016/j.carres.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 12/30/2022]
Abstract
Glucal with different alcohols can be converted into the corresponding 2-deoxy glycosides without Ferrier rearrangement in high yield by treatment with eco friendly transition metal based catalysts [CuCl3·2H2O-NaI (A) or CeCl3·7H2O-NaI (B)] and chiral amine ligand L-proline at various reaction conditions which were optimized for stereoselectivity. The catalyst CeCl3·7H2O-NaI (B) and ligand L-proline in toluene, was found to be much more efficient and high atom economic for the stereoselective glycosidation of propargyl alcohol with glucal, afforded exclusively α-2-deoxy propargyl glycoside in 98% optimized yield. The ligand L-proline was used for the first time in stereoselective glycosidation of α-2-deoxy glycosides involving glucal and alcohols.
Collapse
Affiliation(s)
- Mukul R Gupta
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Kratima Thakur
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Naveen K Khare
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
17
|
Zeng J, Xu Y, Wang H, Meng L, Wan Q. Recent progress on the synthesis of 2-deoxy glycosides. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9010-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Palo-Nieto C, Sau A, Williams R, Galan MC. Cooperative Brønsted Acid-Type Organocatalysis for the Stereoselective Synthesis of Deoxyglycosides. J Org Chem 2016; 82:407-414. [PMID: 28004941 PMCID: PMC5309864 DOI: 10.1021/acs.joc.6b02498] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A practical approach for the α-stereoselective synthesis of deoxyglycosides using cooperative Brønsted acid-type organocatalysis has been developed. The method is tolerant of a wide range of glycoside donors and acceptors, and its versatility is exemplified in the one-pot synthesis of a trisaccharide. Mechanistic studies suggest that thiourea-induced acid amplification of the chiral acid via H-bonding is key for the enhancement in reaction rate and yield, while stereocontrol is dependent on the chirality of the acid.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Ryan Williams
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
19
|
Rasool F, Bhat AH, Hussain N, Mukherjee D. Reaction of Glycals with Organic Peroxides: Synthesis of 2-iodo, 2-Deoxy and 2,3-Unsaturated Glycosides. ChemistrySelect 2016. [DOI: 10.1002/slct.201601849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Faheem Rasool
- Natural Product Chemistry- Miocrobes; Indian Institute of Integrative Medicine (CSIR); Jammu- 180001
- Academy of Scientific and Innovative Research; New Delhi India
| | - Aabid H. Bhat
- Natural Product Chemistry- Miocrobes; Indian Institute of Integrative Medicine (CSIR); Jammu- 180001
| | - Nazar Hussain
- Natural Product Chemistry- Miocrobes; Indian Institute of Integrative Medicine (CSIR); Jammu- 180001
- Academy of Scientific and Innovative Research; New Delhi India
| | - Debaraj Mukherjee
- Natural Product Chemistry- Miocrobes; Indian Institute of Integrative Medicine (CSIR); Jammu- 180001
- Academy of Scientific and Innovative Research; New Delhi India
| |
Collapse
|